【題目】如圖,正方形ABCD中,點(diǎn)PBC邊上,連接AP,將線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到線段PE,過(guò)點(diǎn)EEFBC,分別交直線BCAC于點(diǎn)F,G

1)依題意補(bǔ)全圖形;

2)求證:BP=EF;

3)連接PG,CE,用等式表示線段PG,CE,CD之間的數(shù)量關(guān)系,并證明.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3)結(jié)論:PG2=CD2+CE2,理由見(jiàn)解析

【解析】

1)根據(jù)要求畫(huà)出圖形即可.

2)證明△ABP≌△PFEAAS),即可解決問(wèn)題.

3)證明PF為線段EG的垂直平分線,可得PE=PG,再利用勾股定理即可解決問(wèn)題.

解:(1)補(bǔ)全的圖形如圖所示;

2)證明:如圖,

∵四邊形ABCD是正方形,

∴∠B=90°,

∴∠1+2=90°

∵線段PA繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到線段PE,

PA=PE,∠APE=90°,

∴∠2+3=90°,

∴∠1=3,

EFBCF,

∴∠EFP=90°=B

在△ABP和△PFE中,

∵∠B=EFP,∠1=3,PA=PE,

∴△ABP≌△PFEAAS),

BP=EF

3)結(jié)論:PG2=CD2+CE2

理由:如圖,

∵四邊形ABCD是正方形,

AB=BC=CD

∵△ABP≌△PFE,

AB=PF

BC=PF=CD,

BC-PC=PF-PC,即BP=CF

又∵BP=EF,

EF=CF

∴△CEF是等腰直角三角形,EF=CE

∵∠FCG=ACB=DCB=45°

CF=FG=EF,

PF為線段EG的垂直平分線,

PE=PG

RtPFE中,有PE2=PF2+EF2,

PG2=CD2+CE2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1x軸上,再將AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到AB1C2的位置,點(diǎn)C2x軸上,將A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到A2B2C2的位置,點(diǎn)A2x軸上,依次進(jìn)行下去……,若點(diǎn)A0),B02).則點(diǎn)B2019的坐標(biāo)是( 。

A.6052,0B.60542C.60580D.6060,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)生創(chuàng)業(yè)團(tuán)隊(duì)抓住商機(jī),購(gòu)進(jìn)一批干果分裝成營(yíng)養(yǎng)搭配合理的小包裝后出售,每袋成本3元.試銷期間發(fā)現(xiàn)每天的銷售量y(袋)與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表所示,其中3.5≤x≤5.5,另外每天還需支付其他費(fèi)用80元.

(1)請(qǐng)直接寫(xiě)出yx之間的函數(shù)關(guān)系式;

(2)如果每天獲得160元的利潤(rùn),銷售單價(jià)為多少元?

(3)設(shè)每天的利潤(rùn)為w元,當(dāng)銷售單價(jià)定為多少元時(shí),每天的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)興趣小組在活動(dòng)時(shí),老師提出了這樣一個(gè)問(wèn)題:如圖1,在中,,,DBC的中點(diǎn),求BC邊上的中線AD的取值范圍.

小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng)ADE,使,請(qǐng)補(bǔ)充完整證明的推理過(guò)程.

求證:

證明:延長(zhǎng)AD到點(diǎn)E,使

已作,

______

中點(diǎn)定義,

______,

探究得出AD的取值范圍是______

(感悟)解題時(shí),條件中若出現(xiàn)中點(diǎn)”“中線等字樣,可以考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集合到同一個(gè)三角形中.

(問(wèn)題解決)

如圖2,中,,,AD的中線,,,且,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某幢建筑物10m高的窗口A處用水管向外噴水,噴出的水成拋物線狀(拋物線所在平面與地面垂直).拋物線的最高點(diǎn)M離墻1m,離地面m.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的解析式.

(2)求水的落地點(diǎn)B與點(diǎn)O的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】感知:如圖,在四邊形ABCD中,AB∥CD,∠B=90°,點(diǎn)P在BC邊上,當(dāng)APD=90°時(shí),可知△ABP∽△PCD.(不要求證明)

探究:如圖,在四邊形ABCD中,點(diǎn)P在BC邊上,當(dāng)∠B=∠C=∠APD時(shí),求證:△ABP∽△PCD.

拓展:如圖,在ABC中,點(diǎn)P是邊BC的中點(diǎn),點(diǎn)D、E分別在邊AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,則DE的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,是對(duì)角線上不同的兩點(diǎn),下列條件中,不能得出四邊形一定為平行四邊形的是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開(kāi)通了互聯(lián)網(wǎng)家校合育教育平臺(tái),為了解家長(zhǎng)使用平臺(tái)的情況,學(xué)校將家長(zhǎng)的使用情況分為“經(jīng)常使用”、“偶爾使用”和‘不使用’三種類型,借助該平臺(tái)大數(shù)據(jù)功能,匯總出該校吧(1)班和八(2)班全體家長(zhǎng)的使用情況,并繪制成如圖所示的兩幅變質(zhì)的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)圖中信息解答下列問(wèn)題

1)此次調(diào)查的家長(zhǎng)總?cè)藬?shù)是___________;

2)扇形統(tǒng)計(jì)圖中代表“不使用”類型的扇形圓心角的度數(shù)是___________度;算出八(2)班全體家長(zhǎng)“經(jīng)常使用”平臺(tái)的人數(shù)并補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校八年級(jí)家長(zhǎng)共有1200人,根據(jù)此次調(diào)查結(jié)果估計(jì)該校八年級(jí)中“經(jīng)常使用”類型的家長(zhǎng)月有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,弦AC=2,ABC=30°,ACB的平分線交⊙O于點(diǎn)D,求:

(1)BC、AD的長(zhǎng);

(2)圖中兩陰影部分面積的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案