已知:關(guān)于x的一元二次方程x2+4x+2k=0有兩個不相等的實(shí)數(shù)根.
(1)求k的取值范圍;
(2)當(dāng)k取最大整數(shù)值時,用公式法求該方程的解.
分析:(1)根據(jù)一元二次方程x2+4x+2k=0有兩個不相等的實(shí)數(shù)根,得出△>0,即可得出k的取值范圍;
(2)根據(jù)k的取值范圍,得出符合條件的最大整數(shù)k=1,代入方程求出即可.
解答:解:(1)∵關(guān)于x的一元二次方程x2+4x+2k=0有兩個不相等的實(shí)數(shù)根,
∴△=16-4×2k>0.
解得k<2.

(2)∵k<2,
∴符合條件的最大整數(shù)k=1,
此時方程為x2+4x+2=0.
∴a=1,b=4,c=2.
∴b2-4ac=42-4×1×2=8.
代入求根公式x=
-b±
b2-4ac
2a

x=
-4±2
2
2
=-2±
2

x1=-2+
2
 , x2=-2-
2
點(diǎn)評:此題主要考查了一元二次方程根的判別式以及一元二次方程的解法,此題比較典型同學(xué)們應(yīng)熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程mx2-(2m+n)x+m+n=0①.
(1)求證:方程①有兩個實(shí)數(shù)根;
(2)求證:方程①有一個實(shí)數(shù)根為1;
(3)設(shè)方程①的另一個根為x1,若m+n=2,m為正整數(shù)且方程①有兩個不相等的整數(shù)根時,確定關(guān)于x的二次函數(shù)y=mx2-(2m+n)x+m+n的解析式;
(4)在(3)的條件下,把Rt△ABC放在坐標(biāo)系內(nèi),其中∠CAB=90°,點(diǎn)A、B的坐標(biāo)分別為(1,0)、(4,0),BC=5,將△ABC沿x軸向右平移,當(dāng)點(diǎn)C落在拋物線上時,求△ABC平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、已知:關(guān)于x的一元二次方程ax2+bx+c=3的一個根為x=2,且二次函數(shù)y=ax2+bx+c的對稱軸是直線x=2,則拋物線的頂點(diǎn)坐標(biāo)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2(m+1)x+m2=0有兩個整數(shù)根,m<5且m為整數(shù).
(1)求m的值;
(2)當(dāng)此方程有兩個非零的整數(shù)根時,將關(guān)于x的二次函數(shù)y=x2-2(m+1)x+m2的圖象沿x軸向左平移4個單位長度,求平移后的二次函數(shù)圖象的解析式;
(3)當(dāng)直線y=x+b與(2)中的兩條拋物線有且只有三個交點(diǎn)時,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:關(guān)于x的一元二次方程x2-2x+c=0的一個實(shí)數(shù)根為3.
(1)求c的值;
(2)二次函數(shù)y=x2-2x+c,當(dāng)-2<x≤2時,y的取值范圍;
(3)二次函數(shù)y=x2-2x+c與x軸交于點(diǎn)A、B(A左B右),頂點(diǎn)為點(diǎn)C,問:是否存在這樣的點(diǎn)P,以P為位似中心,將△ABC放大為原來的2倍后得到△DEF(即△EDF∽△ABC,相似比為2),使得點(diǎn)D、E恰好在二次函數(shù)上且DE∥AB?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•延慶縣二模)已知:關(guān)于x的一元二次方程mx2-(2m+2)x+m-1=0
(1)若此方程有實(shí)根,求m的取值范圍;
(2)在(1)的條件下,且m取最小的整數(shù),求此時方程的兩個根;
(3)在(2)的前提下,二次函數(shù)y=mx2-(2m+2)x+m-1與x軸有兩個交點(diǎn),連接這兩點(diǎn)間的線段,并以這條線段為直徑在x軸的上方作半圓P,設(shè)直線l的解析式為y=x+b,若直線l與半圓P只有兩個交點(diǎn)時,求出b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案