9.已知:在△ABC中,AD是∠A的平分線,△ABC的內(nèi)心為I,求證:AI:ID=(AB+AC):BC.

分析 連結(jié)CI,如圖,根據(jù)角平分線的性質(zhì)定理,由AD是∠A的平分線得到$\frac{AB}{AC}$=$\frac{BD}{CD}$,再利用比例的性質(zhì)得$\frac{AB+AC}{BC}$=$\frac{AC}{CD}$,接著根據(jù)三角形內(nèi)心性質(zhì)得到CI平分∠ACD,則利用角平分線的性質(zhì)定理得到$\frac{AC}{CD}$=$\frac{AI}{ID}$,然后根據(jù)等量代換得到結(jié)論.

解答 證明:連結(jié)CI,如圖,
∵AD是∠A的平分線,
∴$\frac{AB}{AC}$=$\frac{BD}{CD}$,
∴$\frac{AB+AC}{AC}$=$\frac{BD+CD}{CD}$=$\frac{BC}{CD}$,
∴$\frac{AB+AC}{BC}$=$\frac{AC}{CD}$,
∵△ABC的內(nèi)心為I,
∴CI平分∠ACD,
∴$\frac{AC}{CD}$=$\frac{AI}{ID}$,
∴$\frac{AI}{ID}$=$\frac{AB+AC}{BC}$.

點評 本題考查了三角形的內(nèi)切圓與內(nèi)心:角形的內(nèi)心到三角形三邊的距離相等;三角形的內(nèi)心與三角形頂點的連線平分這個內(nèi)角.熟練掌握角平分線的性質(zhì)和比例的性質(zhì)是解決此題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.已知$\frac{5{x}^{2}-8x+2}{{x}^{3}-2{x}^{2}-2x+1}$=$\frac{A}{x+1}$+$\frac{Bx+C}{{x}^{2}-3x+1}$,求A,B,C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

20.已知,如圖,EF∥AB,DG∥AC,BG=FC,求證:DE∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在Rt△ABC中,∠C=90°,AC=12,sinA=$\frac{5}{13}$,求AB的長及sinB,cosA和tanA.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.已知:2x2-5xy+3y2=0,求(1-$\frac{2{y}^{3}}{{x}^{3}+{y}^{3}}$)÷(1-$\frac{2y}{x+y}$)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,已知∠AOB=30°,P是∠AOB平分線上一點,CP∥OB,交OA于點C,PD⊥OB,垂足為點D,且PC=4,則PD等于( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.某工人承包運輸糧食的總數(shù)是W噸,每天運x噸,共運了y天,則y與x的關(guān)系式為y=$\frac{w}{x}$(w>0),是反比例函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

18.如圖是4×4正方形網(wǎng)格,其中已有3個小方格涂成了陰影.現(xiàn)在要從其余13個白色小方格中選出一個也涂成陰影,使整個涂成陰影的圖形成為軸對稱圖形,請在圖中補全圖形,并畫出它們各自的對稱軸.(要求畫出3種不同方法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

19.計算:
(1)12+(-4)+(-16)+8             
(2)4-(-1$\frac{2}{3}$)$÷\frac{1}{3}$×(-$\frac{3}{5}$)
(3)$\frac{3}{4}$+(-$\frac{5}{2}$)-(-$\frac{2}{3}$)+1
(4)($\frac{1}{4}$-$\frac{5}{6}$+0.5)÷(-$\frac{1}{12}$)-|-2|
(5 )-14$-\frac{1}{6}$×[2-(-3)2]
(6)(-$\frac{1}{2}$+$\frac{1}{6}$-$\frac{3}{8}$+$\frac{5}{12}$)×(-24)
(7)(-1)2011÷(-$\frac{1}{2}$)2-(0.25-$\frac{3}{8}$)×6  
(8)[26-($\frac{7}{9}$$-\frac{11}{12}$$+\frac{1}{6}$)×(-6)2]÷(-5)2

查看答案和解析>>

同步練習(xí)冊答案