【題目】如圖,在菱形ABCD中,∠BAD=70°,AB的垂直平分線交對角線AC于點(diǎn)F,垂足為E,連接DF,則∠CDF等于(
A.55°
B.65°
C.75°
D.85°

【答案】C
【解析】解:如圖,連接BF,
在菱形ABCD中,∠BAC= ∠BAD= ×70°=35°,∠BCF=∠DCF,BC=DC,
∠ABC=180°﹣∠BAD=180°﹣70°=110°,
∵EF是線段AB的垂直平分線,
∴AF=BF,∠ABF=∠BAC=35°,
∴∠CBF=∠ABC﹣∠ABF=110°﹣35°=75°,
∵在△BCF和△DCF中,
,
∴△BCF≌△DCF(SAS),
∴∠CDF=∠CBF=75°,
故選C.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用線段垂直平分線的性質(zhì)和菱形的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對角線長的積的一半.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E是邊AB上的任意一點(diǎn)(點(diǎn)E不與點(diǎn)B重合),沿DE翻折△DBE使點(diǎn)B落在點(diǎn)F處,連接AF,則線段AF的長取最小值時(shí),BF的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說法不正確的是(
A.b2﹣4ac>0
B.a>0
C.c>0
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某樓盤要對外銷售該樓盤共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000,從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元,

請寫出售價(jià)與樓層x取整數(shù)之間的函數(shù)關(guān)系式.

已知該樓盤每套樓房面積均為100,若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:

方案一:降價(jià),另外每套樓房總價(jià)再減a元;

方案二:降價(jià)

老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計(jì)算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)P、Q分別是邊長為4cm的等邊△ABC邊AB、BC上的動(dòng)點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,
(1)連接AQ、CP交于點(diǎn)M,則在P、Q運(yùn)動(dòng)的過程中,∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù);
(2)何時(shí)△PBQ是直角三角形?
(3)如圖2,若點(diǎn)P、Q在運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線AB、BC上運(yùn)動(dòng),直線AQ、CP交點(diǎn)為M,則∠CMQ變化嗎?若變化,則說明理由,若不變,則求出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形中,,點(diǎn)EF分別在邊AB、AC上,將沿著直線EF折疊,使得A點(diǎn)恰好落在BC邊上的D點(diǎn)處,且

求證:四邊形AFDE是菱形.

,求線段ED的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,邊長為1的正方形OAP1B的頂點(diǎn)A、B分別在x軸、y軸上,點(diǎn)P1在反比例函數(shù)y= (x>0)的圖象上,過P1A的中點(diǎn)B1作矩形B1AA1P2 , 使頂點(diǎn)P2落在反比例函數(shù)的圖象上,再過P2A1的中點(diǎn)B2作矩形B2A1A2P3 , 使頂點(diǎn)P3落在反比例函數(shù)的圖象上,…,依此規(guī)律,作出矩形Bn1An2An1Pn時(shí),落在反比例函數(shù)圖象上的頂點(diǎn)Pn的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABE≌△ADC≌△ABC,若∠1∶∠2∶∠3=2853,則∠α的度數(shù)為(

A. 80° B. 100° C. 60° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題情境:

平面直角坐標(biāo)系中,矩形紙片OBCD按如圖的方式放置已知,將這張紙片沿過點(diǎn)B的直

線折疊,使點(diǎn)O落在邊CD上,記作點(diǎn)A,折痕與邊OD交于點(diǎn)E

數(shù)學(xué)探究:

點(diǎn)C的坐標(biāo)為______;

求點(diǎn)E的坐標(biāo)及直線BE的函數(shù)關(guān)系式;

若點(diǎn)Px軸上的一點(diǎn),直線BE上是否存在點(diǎn)Q,能使以AB,P,Q為頂點(diǎn)的四邊形是平行四邊形?

若存在,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案