【題目】0.5的相反數(shù)是( 。

A.0.5B.0.5C.2D.2

【答案】A

【解析】

根據(jù)相反數(shù)的定義即可求出0.5的相反數(shù).

0.5的相反數(shù)是﹣0.5,故選擇A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,一次函數(shù)y=x+b與反比例函數(shù)k≠0)的圖象交于點(diǎn)A13),Bm1),與x軸交于點(diǎn)D,直線OA與反比例函數(shù)k≠0)的圖象的另一支交于點(diǎn)C,過(guò)點(diǎn)B作直線l垂直于x軸,點(diǎn)E是點(diǎn)D關(guān)于直線l的對(duì)稱點(diǎn).

1k=

2)判斷點(diǎn)B、E、C是否在同一條直線上,并說(shuō)明理由;

3)如圖2,已知點(diǎn)Fx軸正半軸上,OF=,點(diǎn)P是反比例函數(shù)k≠0)的圖象位于第一象限部分上的點(diǎn)(點(diǎn)P在點(diǎn)A的上方),ABP=EBF,則點(diǎn)P的坐標(biāo)為( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y軸于點(diǎn)A,并經(jīng)過(guò)B4,4)和C6,0)兩點(diǎn),點(diǎn)D的坐標(biāo)為(4,0),連接AD,BC,點(diǎn)E從點(diǎn)A出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿線段AD向點(diǎn)D運(yùn)動(dòng),到達(dá)點(diǎn)D后,以每秒1個(gè)單位長(zhǎng)度的速度沿射線DC運(yùn)動(dòng),設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t秒,過(guò)點(diǎn)EAB的垂線EF交直線AB于點(diǎn)F,以線段EF為斜邊向右作等腰直角EFG

1)求拋物線的解析式;

2)當(dāng)點(diǎn)G落在第一象限內(nèi)的拋物線上時(shí),求出t的值;

3)設(shè)點(diǎn)E從點(diǎn)A出發(fā)時(shí),點(diǎn)E,F,G都與點(diǎn)A重合,點(diǎn)E在運(yùn)動(dòng)過(guò)程中,當(dāng)BCG的面積為4時(shí),直接寫(xiě)出相應(yīng)的t值,并直接寫(xiě)出點(diǎn)G從出發(fā)到此時(shí)所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一件商品的進(jìn)價(jià)為a元,將進(jìn)價(jià)提高100%后標(biāo)價(jià),再按標(biāo)價(jià)打七折銷售,則這件商品銷售后的利潤(rùn)為   元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】16050000用科學(xué)計(jì)數(shù)法表示為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用四舍五入法對(duì)0.05049取近似值,精確到0.001的結(jié)果是(

A.0.0505B.0.05C.0.050D.0.051

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,4),B(2,4),C(3,﹣1).

(1)試在平面直角坐標(biāo)系中,標(biāo)出A、B、C三點(diǎn);

(2)求△ABC的面積.

(3)若△A1B1C1與△ABC關(guān)于x軸對(duì)稱,寫(xiě)出A1、B1、C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C、D是半圓O上的三等分點(diǎn),直徑AB=4,連接AD、AC,DE⊥AB,垂足為E,DE交AC于點(diǎn)F.

(1)求∠AFE的度數(shù);

(3)求陰影部分的面積(結(jié)果保留π和根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在△ABC中,∠ACB=90°,AC=BC,過(guò)點(diǎn)C在△ABC外作直線MN,AM⊥MN于點(diǎn)M,BN⊥MN于點(diǎn)N.

(1)試說(shuō)明:MN=AM+BN.

(2)如圖②,若過(guò)點(diǎn)C作直線MN與線段AB相交,AM⊥MN于點(diǎn)M,BN⊥MN于點(diǎn)N(AM>BN),(1)中的結(jié)論是否仍然成立?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案