【題目】如圖,拋物線(xiàn)y=x2﹣2x﹣3與x軸分別交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)如圖1,求△BCD的面積;
(2)如圖2,P是拋物線(xiàn)BD段上一動(dòng)點(diǎn),連接CP并延長(zhǎng)交x軸于E,連接BD交PC于F,當(dāng)△CDF的面積與△BEF的面積相等時(shí),求點(diǎn)E和點(diǎn)P的坐標(biāo).
【答案】(1)3;(2)E(5,0),P(,﹣)
【解析】
(1)分別求出點(diǎn)C,頂點(diǎn)D,點(diǎn)A,B的坐標(biāo),如圖1,連接BC,過(guò)點(diǎn)D作DM⊥y軸于點(diǎn)M,作點(diǎn)D作DN⊥x軸于點(diǎn)N,證明△BCD是直角三角形,即可由三角形的面積公式求出其面積;
(2)先求出直線(xiàn)BD的解析式,設(shè)P(a,a2﹣2a﹣3),用含a的代數(shù)式表示出直線(xiàn)PC的解析式,聯(lián)立兩解析式求出含a的代數(shù)式的點(diǎn)F的坐標(biāo),過(guò)點(diǎn)C作x軸的平行線(xiàn),交BD于點(diǎn)H,則yH=﹣3,由△CDF與△BEF的面積相等,列出方程,求出a的值,即可寫(xiě)出E,P的坐標(biāo).
(1)在y=x2﹣2x﹣3中,
當(dāng)x=0時(shí),y=﹣3,
∴C(0,﹣3),
當(dāng)x=﹣=1時(shí),y=﹣4,
∴頂點(diǎn)D(1,﹣4),
當(dāng)y=0時(shí),
x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0),
如圖1,連接BC,過(guò)點(diǎn)D作DM⊥y軸于點(diǎn)M,作點(diǎn)D作DN⊥x軸于點(diǎn)N,
∴DC2=DM2+CM2=2,BC2=OC2+OB2=18,DB2=DN2+BN2=20,
∴DC2+BC2=DB2,
∴△BCD是直角三角形,
∴S△BCD=DCBC=×3=3;
(2)設(shè)直線(xiàn)BD的解析式為y=kx+b,
將B(3,0),D(1,﹣4)代入,
得,
解得,k=2,b=﹣6,
∴yBD=2x﹣6,
設(shè)P(a,a2﹣2a﹣3),直線(xiàn)PC的解析式為y=mx﹣3,
將P(a,a2﹣2a﹣3)代入,
得am=a2﹣2a﹣3,
∵a≠0,
∴解得,m=a﹣2,
∴yPC=(a﹣2)x﹣3,
當(dāng)y=0時(shí),x=,
∴E(,0),
聯(lián)立,
解得,,
∴F(,),
如圖2,過(guò)點(diǎn)C作x軸的平行線(xiàn),交BD于點(diǎn)H,則yH=﹣3,
∴H(,﹣3),
∴S△CDF=CH(yF﹣yD),S△BEF=BE(﹣yF),
∴當(dāng)△CDF與△BEF的面積相等時(shí),
CH(yF﹣yD)=BE(﹣yF),
即×(+4)=(﹣3)(﹣),
解得,a1=4(舍去),a2=,
∴E(5,0),P(,﹣).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線(xiàn):y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點(diǎn)O,A1;將C1繞A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2繞A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,直至得到C2018,若點(diǎn)P(4035,m)在第2018段拋物線(xiàn)C2018上,則m的值是( )
A.1B.-1C.0D.4035
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以點(diǎn)A為圓心2為半徑的圓上一點(diǎn),連接BD,M為BD的中點(diǎn),則線(xiàn)段CM長(zhǎng)度的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】周末,小馬和小聰想用所學(xué)的數(shù)學(xué)知識(shí)測(cè)量圖書(shū)館前小河的寬,測(cè)量時(shí),他們選擇河對(duì)岸邊的一棵大樹(shù),將其底部作為點(diǎn)A,在他們所在的岸邊選擇了點(diǎn)B,使得AB與河岸垂直,并在B點(diǎn)豎起標(biāo)桿BC,再在AB的延長(zhǎng)線(xiàn)上選擇點(diǎn)D豎起標(biāo)桿DE,使得點(diǎn)E與點(diǎn)C、A共線(xiàn).已知:CB⊥AD,ED⊥AD,測(cè)得BC=1m,DE=1.35m,BD=7m.測(cè)量示意圖如圖所示.請(qǐng)根據(jù)相關(guān)測(cè)量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖甲是小張同學(xué)設(shè)計(jì)的帶圖案的花邊作品,該作品由形如圖乙的矩形圖案設(shè)計(jì)拼接面成(不重疊,無(wú)縫隙).圖乙中,點(diǎn)E、F、G、H分別為矩形AB、BC、CD、DA的中點(diǎn),若AB=4,BC=6,則圖乙中陰影部分的面積為
_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1) 請(qǐng)畫(huà)出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△ABC;
(2) 請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱(chēng)的△ABC;
(3) 在軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫(huà)出△PAB,并直接寫(xiě)出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為邊上的一點(diǎn),E,F分別是邊,的中點(diǎn),,,的面積分別為S,,,若,則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB邊為直徑的⊙O經(jīng)過(guò)點(diǎn)P,C是⊙O上一點(diǎn),連結(jié)PC交AB于點(diǎn)E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CECP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)H,點(diǎn)F是上一點(diǎn),連接AF交CD的延長(zhǎng)線(xiàn)于點(diǎn)E.
(1)求證:△AFC∽△ACE;
(2)若AC=5,DC=6,當(dāng)點(diǎn)F為的中點(diǎn)時(shí),求AF的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com