如圖,正三角形ABC的邊長是2,分別以點B,C為圓心,以r為半徑作兩條弧,設兩弧與邊BC圍成的陰影部分面積為S,當≤r<2時,S的取值范圍是  

考點:

扇形面積的計算;等邊三角形的性質.

分析:

首先求出S關于r的函數(shù)表達式,分析其增減性;然后根據(jù)r的取值,求出S的最大值與最小值,從而得到S的取值范圍.

解答:

解:如右圖所示,過點D作DG⊥BC于點G,易知G為BC的中點,CG=1.

在Rt△CDG中,由勾股定理得:DG==

設∠DCG=θ,則由題意可得:

S=2(S扇形CDE﹣S△CDG)=2(×1×)=,

∴S=

當r增大時,∠DCG=θ隨之增大,故S隨r的增大而增大.

當r=時,DG==1,∵CG=1,故θ=45°,

∴S==﹣1;

若r=2,則DG==,∵CG=1,故θ=60°,

∴S==

∴S的取值范圍是:﹣1≤S<

故答案為:﹣1≤S<

點評:

本題考查扇形面積的計算、等邊三角形的性質、勾股定理等重要知識點.解題關鍵是求出S的函數(shù)表達式,并分析其增減性.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,正三角形ABC的邊長為12,三個全等的小正三角形重心(即三條中線的交點)與正三角形ABC的頂點重合,且他們各有一邊與正三角形ABC的一邊平行.若小正三角形的邊長為x,且0<x≤12,陰影部分的面積為S,則能反映S與x之間函數(shù)關系的大致圖象是(  )
A、精英家教網B、精英家教網C、精英家教網D、精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正三角形ABC的邊長為1cm,將線段AC繞點A順時針旋轉120°至AP1,形成扇形D1;將線段BP1繞點B順時針旋轉120°至BP2,形成扇形D2;將線段CP2繞點C順時針旋轉120°至CP3,形成扇形D3;將線段AP3繞點A順時針旋轉120°至AP4,形成扇形D4….設ln為扇形Dn的弧長(n=1,2,3…),回答下列問題:
(1)按照要求填表:
 1  4
ln         
(2)根據(jù)上表所反映的規(guī)律,試估計n至少為何值時,扇形Dn的弧長能繞地球赤道一周(設地球赤道半徑為6400km).
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,正三角形ABC的邊長為l,點M,N,P分別在邊BC,AB上,設BM=x,CN=y,AP=z,且x+y+z=1.
(1)試用x,y,z表示△MNP的面積
(2)求△MNP面積的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•十堰)如圖,正三角形ABC的邊長是2,分別以點B,C為圓心,以r為半徑作兩條弧,設兩弧與邊BC圍成的陰影部分面積為S,當
2
≤r<2時,S的取值范圍是
π
2
-1≤S<
3
-
3
π
2
-1≤S<
3
-
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正三角形ABC內接于圓O,動點P在圓周的劣弧AB上,且不與A,B重合,則∠BPC=
60°
60°

查看答案和解析>>

同步練習冊答案