【題目】已知在Rt△ABC中,∠ACB=90°,現(xiàn)按如下步驟作圖:
①分別以A,C為圓心,a為半徑(a>AC)作弧,兩弧分別交于M,N兩點(diǎn);
②過(guò)M,N兩點(diǎn)作直線MN交AB于點(diǎn)D,交AC于點(diǎn)E;
③將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,設(shè)點(diǎn)D的像為點(diǎn)F.
(1)請(qǐng)?jiān)趫D中直線標(biāo)出點(diǎn)F并連接CF;
(2)求證:四邊形BCFD是平行四邊形;
(3)當(dāng)∠B為多少度時(shí),四邊形BCFD是菱形.
【答案】見(jiàn)解析;見(jiàn)解析;60°
【解析】
試題(1)根據(jù)題意作出圖形即可;
(2)首先根據(jù)作圖得到MN是AC的垂直平分線,然后得到DE等于BC的一半,從而得到DE=EF,即DF=BC,然后利用一組對(duì)邊平行且相等的四邊形是平行四邊形進(jìn)行判定即可;
(3)得到BD=CB后利用鄰邊相等的平行四邊形是菱形進(jìn)行判定即可
試題解析:(1)如圖所示:
(2)∵根據(jù)作圖可知:MN垂直平分線段AC,∴D、E為線段AB和AC的中點(diǎn),
∴DE是△ABC的中位線,∴DE=BC,
∵將△ADE繞點(diǎn)E順時(shí)針旋轉(zhuǎn)180°,點(diǎn)D的像為點(diǎn)F, ∴EF=ED, ∴DF=BC,
∵DE∥BC, ∴四邊形BCFD是平行四邊形;
(3)當(dāng)∠B=60°時(shí),四邊形BCFD是菱形; ∵∠B=60°, ∴BC=AB,
∵DB=AB, ∴DB=CB, ∵四邊形BCFD是平行四邊形, ∴四邊形BCFD是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售每個(gè)進(jìn)價(jià)為150元和120元的A、B兩種型號(hào)的足球,如表是近兩周的銷售情況:
銷售時(shí)段 | 銷售數(shù)量 | 銷售收入 | |
A種型號(hào) | B種型號(hào) | ||
第一周 | 3個(gè) | 4個(gè) | 1200元 |
第二周 | 5個(gè) | 3個(gè) | 1450元 |
進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)銷售收入進(jìn)貨成本
(1)求A、B兩種型號(hào)的足球的銷售單價(jià);
(2)若商場(chǎng)準(zhǔn)備用不多于8400元的金額再購(gòu)進(jìn)這兩種型號(hào)的足球共60個(gè),求A種型號(hào)的足球最多能采購(gòu)多少個(gè)?
(3)在的條件下,商場(chǎng)銷售完這60個(gè)足球能否實(shí)現(xiàn)利潤(rùn)超過(guò)2550元,若能,請(qǐng)給出相應(yīng)的采購(gòu)方案;若不能請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),拋物線y=x2﹣2x+k與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣3).
(1)k= , 點(diǎn)A的坐標(biāo)為 , 點(diǎn)B的坐標(biāo)為;
(2)設(shè)拋物線y=x2﹣2x+k的頂點(diǎn)為M,求四邊形ABMC的面積;
(3)在x軸下方的拋物線上是否存在一點(diǎn)D,使四邊形ABDC的面積最大?若存在,請(qǐng)求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)在拋物線y=x2﹣2x+k上求出點(diǎn)Q坐標(biāo),使△BCQ是以BC為直角邊的直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:點(diǎn)C在直線AB上,AC=8cm,BC=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn),求線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人去水果批發(fā)市場(chǎng)采購(gòu)獼猴桃,他看中了A、B兩家獼猴桃.這兩家獼猴桃品質(zhì)一樣,零售價(jià)都為6元/千克,批發(fā)價(jià)各不相同,
A家規(guī)定:批發(fā)數(shù)量不超過(guò)1000千克,按零售價(jià)的92%優(yōu)惠;批發(fā)數(shù)量不超過(guò)2000千克,按零售價(jià)的90%優(yōu)惠;超過(guò)2000千克的按零售價(jià)的88%優(yōu)惠.
B家的規(guī)定如下表:
數(shù)量范圍 (千克) | 0~500 | 500以上~1500 | 1500以上~2500 | 2500以上 |
價(jià)格(元) | 零售價(jià)的95% | 零售價(jià)的85% | 零售價(jià)的75% | 零售價(jià)的70% |
(1)如果他批發(fā)600千克獼猴桃,則他在A 、B兩家批發(fā)分別需要多少元?
(2)如果他批發(fā)x千克獼猴桃(1500<x<2000),請(qǐng)你分別用含x的代數(shù)式表示他在A、B兩家批發(fā)所需的費(fèi)用;
(3)現(xiàn)在他要批發(fā)1800千克獼猴桃,你能幫助他選擇在哪家批發(fā)更優(yōu)惠嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,BC=a,AC=b,AB=c,若∠C=90°,如圖(1),根據(jù)勾股定理,則a2+b2=c2,若△ABC不是直角三角形,如圖(2)和圖(3),請(qǐng)你類比勾股定理,試猜想a2+b2與c2的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB交x軸于點(diǎn)A(5,0),交y軸于點(diǎn)B,AO是⊙M的直徑,其半圓交AB于點(diǎn)C,且AC=3.取BO的中點(diǎn)D,連接CD、MD和OC.
(1)求證:CD是⊙M的切線;
(2)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D、M、A,其對(duì)稱軸上有一動(dòng)點(diǎn)P,連接PD、PM,求△PDM的周長(zhǎng)最小時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,當(dāng)△PDM的周長(zhǎng)最小時(shí),拋物線上是否存在點(diǎn)Q,使S△QAM= S△PDM?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)四邊形ABCD(頂點(diǎn)是網(wǎng)格線的交點(diǎn)),按要求畫(huà)出四邊形AB1C1D1和四邊形AB2C2D2 .
(1)以A為旋轉(zhuǎn)中心,將四邊形ABCD順時(shí)針旋轉(zhuǎn)90°,得到四邊形AB1C1D1;
(2)以A為位似中心,將四邊形ABCD作位似變換,且放大到原來(lái)的兩倍,得到四邊形AB2C2D2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,分別以點(diǎn)A和點(diǎn)B為圓心,大于AB的長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)M,N,作直線MN,交BC于點(diǎn)D,連接AD.若△ADC的周長(zhǎng)為10,AB=7,則△ABC的周長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com