判斷:軸對稱圖形的對稱軸是一條線段.(      )

答案:F
解析:


提示:

軸對稱圖形的對稱軸是一條直線


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、在平面內(nèi),如果一個圖形繞一個定點旋轉(zhuǎn)一定的角度后能與自身重合,那么就稱這個圖形是旋轉(zhuǎn)對稱圖形,轉(zhuǎn)動的這個角稱為這個圖形的一個旋轉(zhuǎn)角.例如:正方形繞著它的對角線的交點旋轉(zhuǎn)90°后能與自身重合(如圖),所以正方形是旋轉(zhuǎn)對稱圖形,它有一個旋轉(zhuǎn)角為90度.
(1)判斷下列命題的真假(在相應(yīng)的括號內(nèi)填上“真”或“假”).
①等腰梯形是旋轉(zhuǎn)對稱圖形,它有一個旋轉(zhuǎn)角為180度.(

②矩形是旋轉(zhuǎn)對稱圖形,它有一個旋轉(zhuǎn)角為180°.(

(2)填空:下列圖形中,是旋轉(zhuǎn)對稱圖形,且有一個旋轉(zhuǎn)角為120°的是
①,③
(寫出所有正確結(jié)論的序號):①正三角形;②正方形;③正六邊形;④正八邊形.
(3)寫出兩個多邊形,它們都是旋轉(zhuǎn)對圖形,都有一個旋轉(zhuǎn)角為72°,并且分別滿足下列條件
①是軸對稱圖形,但不是中心對稱圖形:
如正五邊形、正十五邊形
;
②既是軸對稱圖形,又是中心對稱圖形:
如正十邊形、正二十邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

38、給出下列四個判斷:(1)線段是軸對稱圖形,它只有一條對稱軸;(2)各邊相等的圓外切多邊形是正多方形;(3)一組對邊相等,一條對角線被另一條對角線平分的四邊形是平行四邊形;(4)已知方程ax2+bx+c=0中,a、b、c是實數(shù),且b2-4ac>0,那么這個方程有兩個不相等的實數(shù)根.
其中不正確的判斷有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、如圖,下面對圖形的判斷正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•劍川縣一模)小華和小明在玩摸紙牌游戲,現(xiàn)有3張背面相同的紙牌A、B、C,其正面分別畫有三個不同的幾何圖形(如圖).將這3張紙牌背面朝上洗勻后從中任意摸出一張,放回洗勻后再摸出一張.若兩次摸出的牌都是軸對稱圖形,則小華贏,否則小明贏.請你畫出樹狀圖或列表來判斷此游戲?qū)﹄p方是否公平?若公平,請說明理由;若不公平,請你設(shè)計出公平的方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在圖形的全等變換中,有旋轉(zhuǎn)變換,翻折(軸對稱)變換和平移變換.一次數(shù)學(xué)活動課上,老師組織大家利用矩形進行圖形變換的探究活動.

(1)第一小組的同學(xué)發(fā)現(xiàn),在如圖1-1的矩形ABCD中,AC、BD相交于點O,Rt△ADC可以由Rt△ABC經(jīng)過一種變換得到,請你寫出這種變換的過程  ▲ 

(2)第二小組同學(xué)將矩形紙片ABCD按如下順序進行操作:對折、展平,得折痕EF(如圖2-1);再沿GC折疊,使點B落在EF上的點B'處(如圖2-2),這樣能得到∠B'GC的大小,你知道∠B'GC的大小是多少嗎?請寫出求解過程.

(3)第三小組的同學(xué),在一個矩形紙片上按照圖3-1的方式剪下△ABC,其中BABC,將△ABC沿著直線AC的方向依次進行平移變換,每次均移動AC的長度,得到了△CDE、△EFG和△GHI,如圖3-2.已知AH=AI,判斷以ADAFAH為三邊能否構(gòu)成三角形?若能構(gòu)成,請判斷這個三角形的形狀,若不能構(gòu)成,請說明理由.

(4)探究活動結(jié)束后,老師給大家留下了一道探究題:如圖4-1,已知AA'BB'CC'=4,∠AOB'=∠BOC'=∠COA'=60°,請利用圖形變換探究SAOB'+SBOC'+SCOA'的大小關(guān)系.

 

查看答案和解析>>

同步練習(xí)冊答案