【題目】(12分)當我們利用兩種不同的方法計算同一圖形的面積時,可以得到一個等式.例如,由圖①,可得等式:(a+2b)(a+b)=a2+3ab+2b2.
(1)由圖②,可得等式:__________________________;
(2)利用(1)中所得到的結(jié)論,解決下面的問題:
已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;
(3)利用圖③中的紙片(足夠多),畫出一種拼圖,使該拼圖可用來驗證等式:2a2+5ab+2b2=(2a+b)(a+2b);
(4)琪琪用2張邊長為a的正方形,3張邊長為b的正方形,5張邊長分別為a,b的長方形紙片重新拼出一個長方形,那么該長方形較長的一條邊長為________.
【答案】(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)45;(3)答案見解析;(4) 2a+3b.
【解析】試題分析:(1).根據(jù)圖2,利用直接求與間接法分別表示出正方形面積,即可確定出所求等式;(2).根據(jù)(1)中的等式,進行變形,求出所求式子的值即可;(3).根據(jù)已知等式,做出長為2a+b,寬為a+2b的長方形圖形即可;(4).根據(jù)題意知圖形的面積是2a2+5ab+3b2,列出關(guān)系式2a2+5ab+3b2=(2a+3b)(a+b),即可確定出長方形較長的邊.
解:(1)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc.
(2)∵a+b+c=11,ab+bc+ac=38,∴a2+b2+c2=(a+b+c)2-2(ab+ac+bc)=112-2×38=45.
(3)如圖所示.
(4)根據(jù)題意得:2a2+5ab+3b2=(2a+3b)(a+b),
則較長的一邊為2a+3b.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家超市以相同的價格出售同樣的商品,為了吸引顧客,各自推出不同的優(yōu)惠方案:在甲超市累計購買商品超出300元之后,超出部分按原價8折優(yōu)惠;在乙超市累計購買商品超出200元之后,超出部分按原價8.5折優(yōu)惠.設(shè)顧客預(yù)計累計購物元().
(1)請用含的代數(shù)式分別表示顧客在兩家超市購物所付的費用;
(2)李明準備購買500元的商品,你認為他應(yīng)該去哪家超市?請說明理由;
(3)計算一下,李明購買多少元的商品時,到兩家超市購物所付的費用一樣?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE= AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結(jié)論:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等邊三角形.其中正確的是( )
A.①②
B.②③
C.①③
D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是高,AE、BF是角平分線,它們相交于點O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AD=2,E是AB的中點,將△BEC繞點B逆時針旋轉(zhuǎn)90°后,點E落在CB的延長線上點F處,點C落在點A處.再將線段AF繞點F順時針旋轉(zhuǎn)90°得線段FG,連接EF,CG.
(1)求證:EF∥CG;
(2)求點C,點A在旋轉(zhuǎn)過程中形成的 , 與線段CG所圍成的陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間有26名工人,每人每天可以生產(chǎn)800個螺釘或1000個螺母,1個螺釘需要配2個螺母,為使每天生產(chǎn)的螺釘和螺母剛好配套,設(shè)安排x名工人生產(chǎn)螺釘,則下面所列方程正確的是( )
A.1000(26﹣x)=800x
B.1000(13﹣x)=800x
C.1000(26﹣x)=2×800x
D.2×1000(26﹣x)=800x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與x軸交于點A(,0)、B(4,0)兩點,與y軸交于點C。
。1)求拋物線的解析式;
(2)點P從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發(fā),在線段BC上以每秒1個單位長度向C點運動。其中一個點到達終點時,另一個點也停止運動。當△PBQ存在時,求運動多少秒使△PBQ的面積最大,最多面積是多少?
(3)當△PBQ的面積最大時,在BC下方的拋物線上存在點K,使S△CBK∶S△PBO=5∶2,求K點坐標。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com