分析 (1)設(shè)去年A型車每輛售價x元,則今年售價每輛為(x-200)元,由賣出的數(shù)量相同建立方程求出其解即可;
(2)設(shè)今年新進A型車a輛,則B型車(60-a)輛,獲利y元,由條件表示出y與a之間的關(guān)系式,由a的取值范圍就可以求出y的最大值.
解答 解:(1)設(shè)去年A型車每輛售價x元,則今年售價每輛為(x-200)元,由題意,得
$\frac{80000}{x}$=$\frac{80000(1-10%)}{x-200}$,
解得:x=2000.
經(jīng)檢驗,x=2000是原方程的根.
答:去年A型車每輛售價為2000元;
(2)設(shè)今年新進A型車a輛,則B型車(60-a)輛,獲利y元,由題意,得
y=(1800-1500)a+(2400-1800)(60-a),
y=-300a+36000.
∵B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,
∴60-a≤2a,
∴a≥20.
∵y=-300a+36000.
∴k=-300<0,
∴y隨a的增大而減小.
∴a=20時,y有最大值
∴B型車的數(shù)量為:60-20=40輛.
∴當新進A型車20輛,B型車40輛時,這批車獲利最大.
點評 本題考查了列分式方程解實際問題的運用,分式方程的解法的運用,一次函數(shù)的解析式的運用,解答時由銷售問題的數(shù)量關(guān)系求出一次函數(shù)的解析式是關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x+y=12}\\{12%x+8%y=14}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=12}\\{(1+12%)x+(1+8%)y=14}\end{array}\right.$ | ||
C. | $\left\{\begin{array}{l}{x+y=14}\\{12%x+8%y=12}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=14}\\{(1+12%)x+(1+8%)y=12}\end{array}\right.$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
分組(分) | 頻數(shù) | 頻率 |
50<x 60 | 2 | 0.04 |
60<x 70 | 12 | a |
70<x<80 | b | 0.36 |
80<x 90 | 14 | 0.28 |
90<x 100 | c | 0.08 |
合計 | 50 | 1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com