【題目】如圖,在平面直角坐標系中,△AOB是直角三角形,∠AOB=90°,邊AB與y軸交于點C.
(1)若∠A=∠AOC,試說明:∠B=∠BOC;
(2)延長AB交x軸于點E,過O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度數(shù);
(3)如圖,OF平分∠AOM,∠BCO的平分線交FO的延長線于點P,∠A=40°,當△ABO繞O點旋轉(zhuǎn)時(邊AB與y軸正半軸始終相交于點C),問∠P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請說明理由.
【答案】⑴見解析(2)30°(3)∠P的度數(shù)不變,∠P=25°,理由見解析
【解析】解⑴∵△AOB是直角三角形
∴∠A+∠B=90°,∠AOC+∠BOC=90°
∵∠A=∠AOC ∴∠B=∠BOC
⑵∵∠A+∠ABO=90°,∠DOB+∠ABO=90°
∴∠A=∠DOB 即∠DOB=∠EOB=∠OAE=∠OEA
∵∠DOB+∠EOB+∠OEA=90° ∴∠A=30°
⑶∠P的度數(shù)不變,∠P=25°.
∵∠AOM=90°-∠AOC,∠BCO=∠A+∠AOC
又OF平分∠AOM,CP平分∠BCO
∴∠FOM=45°-∠AOC,∠PCO=∠A+∠AOC
∴∠P=180°-(∠PCO+∠FOM+90°)=45°-∠A=25°
(1)由直角三角形兩銳角互余及等角的余角相等即可證明;
(2)由直角三角形兩銳角互余、等量代換求得∠DOB=∠EOB=∠OAE=∠E;然后根據(jù)外角定理知∠DOB+∠EOB+∠OEA=90°;從而求得∠DOB=30°,即∠A=30°;
(3)由角平分線的性質(zhì)知∠FOM=45°- ∠AOC ①,∠PCO= ∠A+ ∠AOC ②,根據(jù)①②解得∠PCO+∠FOM=45°+ ∠A,最后根據(jù)三角形內(nèi)角和定理求得旋轉(zhuǎn)后的∠P的度數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(﹣2,4),過點A作AB⊥y軸,垂足為B,連結(jié)OA.
(1)求△OAB的面積;
(2)若拋物線y=﹣x2﹣2x+c經(jīng)過點A,求c的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=20,
(1)寫出數(shù)軸上點B表示的數(shù) ;
(2)|5﹣3|表示5與3之差的絕對值,實際上也可理解為5與3兩數(shù)在數(shù)軸上所對的兩點之間的距離.如|x﹣3|的幾何意義是數(shù)軸上表示有理數(shù)x的點與表示有理數(shù)3的點之間的距離.試探索:
①:若|x﹣8|=2,則x= .
②:|x+12|+|x﹣8|的最小值為 .
(3)動點P從O點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.求當t為多少秒時?A,P兩點之間的距離為2;
(4)動點P,Q分別從O,B兩點,同時出發(fā),點P以每秒5個單位長度沿數(shù)軸向右勻速運動,Q點以P點速度的兩倍,沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.問當t為多少秒時?P,Q之間的距離為4.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在黃州服裝批發(fā)市場,某種品牌的時裝當季節(jié)將來臨時,價格呈上升趨勢,設(shè)這種時裝開始時定價為20元,并且每周(7天)漲價2元,從第6周開始保持30元的價格平穩(wěn)銷售;從第12周開始,當季節(jié)即將過去時,平均每周減價2元,直到第16周周末,該服裝不再銷售.
(1)試建立銷售價y與周次x之間的函數(shù)關(guān)系式;
(2)若這種時裝每件進價Z與周次x次之間的關(guān)系為Z=﹣0.125(x﹣8)2+12,1≤x≤16,且x為整數(shù),試問該服裝第幾周出售時,每件銷售利潤最大?最大利潤為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(請?zhí)羁眨?/span>
解:∵EF∥AD
∴∠2= (
又∵∠1=∠2
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=70°( )
∴∠AGD= ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某地臺風帶來嚴重災害,該市組織20輛汽車裝食品、藥品、生活用品三種救災物質(zhì)共100噸到災民安置點.按計劃20輛汽車都要裝運,每輛汽車只能裝運同種物質(zhì)且必須裝滿.根據(jù)表格提供的信息,解答下列問題:
物資種類 | 食品 | 藥品 | 生活用品 |
每輛汽車運載量(噸) | 6 | 5 | 4 |
每噸所需運費(元/噸) | 120 | 160 | 100 |
(1)若裝食品的車輛是5輛,裝藥品的車輛為__________輛;
(2)設(shè)裝食品的車輛為x輛,裝藥品的車輛為y輛,求y與x的函數(shù)關(guān)系式;
(3)如果裝食品的車輛不少于7輛,裝藥品的車輛不少于4輛,那么車輛的安排有幾種方案?請寫出每種方案并求出最少費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A. 一個游戲中獎的概率是,則做100次這樣的游戲一定會中獎
B. 為了了解全國中學生的心理健康狀況,應采用普查的方式
C. 一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1
D. 若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著我國經(jīng)濟的高速發(fā)展,有著“經(jīng)濟晴雨表”之稱的股市也得到迅速的發(fā)展,下表是今年上證指數(shù)某一周星期一至星期五的變化情況.(注:上周五收盤時上證指數(shù)為2019點,每一天收盤時指數(shù)與前一天相比,漲記為“”,跌記為“”
星期 | 一 | 二 | 三 | 四 | 五 |
指數(shù)的變化(與前一天比較) |
(1)本周星期二收盤時的上證指數(shù)是 點;
(2)本周星期五收盤時的上證指數(shù)與上周星期五收盤時的上證指數(shù)相比,是增加了還是減少了?
(3)本周哪一天收盤時的上證指數(shù)最高?哪一天收盤時的上證指數(shù)最低?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】合肥市打造世界級國家旅游中心,精心設(shè)計12個千年古鎮(zhèn)。如圖1是某明清小院圍墻中的精美圖案,它是兩個形狀大小相同的菱形與一個圓組成,且A、C、E、G在其對稱軸AG上.已知菱形的邊長和圓的直徑都是1dm,∠A= 60°.
(1)求圖案中AG的長;
(2)假設(shè)小院的圍墻一側(cè)用上述圖案如圖2排列,其中第二塊圖案左邊菱形一個頂點正好經(jīng)過第一塊圖案的右邊菱形的對稱中心,....,以此類推,第101塊這種圖案這樣排列長為多少m?(不考慮縫隙及拼接處)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com