【題目】在平面直角坐標系中,拋物線y=mx2﹣2mx﹣3m與x軸交于A、B兩點(點A在點B左側),與y軸交于點C,連接AC,BC,將△OBC沿BC所在的直線翻折,得到△DBC,連接OD.
(1)點A的坐標為 ,點B的坐標為 .
(2)如圖,若點D落在拋物線的對稱軸上,且在x軸上方,求拋物線的解析式.
(3)設△OBD的面積為S1,△OAC的面積為S2,若S1=S2,求m的值.
【答案】(1)(﹣1,0),(3,0);(2)y=﹣x2+x+;(3)﹣
【解析】
(1)拋物線的表達式為:y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),即可求解;
(2)證明△CPD∽△DQB,即可求解;
(3)S2=S△AOC=×1×(﹣3m)=-m,而S1=S△BOD=×DO×MB=OM×MB,由S1=S2即可求解.
(1)拋物線的表達式為:y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),
故點A、B的坐標分別為:(﹣1,0)、(3,0),
故答案為:(﹣1,0)、(3,0);
(2)過點B作y軸的平行線BQ,過點D作x軸的平行線交y軸于點P、交BQ于點Q,
設:D(1,n),點C(0,﹣3m),
∵∠CDP+∠PDC=90°,∠PDC+∠QDB=90°,
∴∠QDB=∠DCP,
又∵∠CPD=∠BQD=90°,
∴△CPD∽△DQB,
∴,
其中:CP=n+3m,DQ=3﹣1=2,PD=1,BQ=n,CD=﹣3m,BD=3,
將以上數值代入比例式并解得:m=±,
∵m<0,故m=﹣,
故拋物線的表達式為:y=﹣x2+x+;
(3)y=m(x2﹣2x﹣3)=m(x+1)(x﹣3),
∴C(0,﹣3m),CO=﹣3m.
∵A(﹣1,0),B(3,0),
∴AB=4,
∴S2=S△AOC=×1×(﹣3m)=﹣m,
設OD交BC于點M,
由軸對稱性,BC⊥OD,OD=2OM,
在Rt△COB中,BC=,
由面積法得:OM= ,
∴tan∠COB==﹣m,則cos∠COB=,
MB=OBcos∠COB=,
∴S1=S△BOD=×DO×MB=OM×MB=﹣ ,
又S1=S2,
∴m2+1=(m<0),
故m=﹣.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.
(1)求證:四邊形ACDF是平行四邊形;
(2)當CF平分∠BCD時,寫出BC與CD的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐:
如圖1,將一個等腰直角三角尺的頂點放置在直線上,,,過點作于點,過點作于點.
觀察發(fā)現:
(1)如圖1.當,兩點均在直線的上方時,
①猜測線段,與的數量關系,并說明理由;
②直接寫出線段,與的數量關系;
操作證明:
(2)將等腰直角三角尺繞著點逆時針旋轉至圖2位置時,線段,與又有怎樣的數量關系,請寫出你的猜想,并寫出證明過程;
拓廣探索:
(3)將等腰直角三用尺繞著點繼續(xù)旋轉至圖3位置時,與交于點,若,,請直接寫出的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“其他”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如下統(tǒng)計圖:
根據統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次抽樣調查中的樣本容量是 ;
(2)補全條形統(tǒng)計圖;
(3)該校共有2000名學生,請根據統(tǒng)計結果估計該校課余興趣愛好為“打球”的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,AC為直徑,AC和BD交于點E,AB=BC.
(1)求∠ADB的度數;
(2)過B作AD的平行線,交AC于F,試判斷線段EA,CF,EF之間滿足的等量關系,并說明理由;
(3)在(2)條件下過E,F分別作AB,BC的垂線,垂足分別為G,H,連接GH,交BO于M,若AG=3,S四邊形AGMO:S四邊形CHMO=8:9,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有甲、乙兩種客車,2輛甲種客車與3輛乙種客車的總載客量為180人,1輛甲種客車與2輛乙種客車的總載客量為105人.
(1)請問1輛甲種客車與1輛乙種客車的載客量分別為多少人?
(2)某學校組織240名師生集體外出活動,擬租用甲、乙兩種客車共6輛,一次將全部師生送到指定地點.若每輛甲種客車的租金為400元,每輛乙種客車的租金為280元,請給出最節(jié)省費用的租車方案,并求出最低費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,,tanA=3,∠ABC=45°,射線BD從與射線BA重合的位置開始,繞點B按順時針方向旋轉,與射線BC重合時就停止旋轉,射線BD與線段AC相交于點D,點M是線段BD的中點.
(1)求線段BC的長;
(2)①當點D與點A、點C不重合時,過點D作DE⊥AB于點E,DF⊥BC于點F,連接ME,MF,在射線BD旋轉的過程中,∠EMF的大小是否發(fā)生變化?若不變,求∠EMF的度數;若變化,請說明理由.
②在①的條件下,連接EF,直接寫出△EFM面積的最小值______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】貨車和轎車分別從甲、乙兩地同時出發(fā),沿同一公路相向而行.轎車出發(fā)2.4h后休息,直至與貨車相遇后,以原速度繼續(xù)行駛.設貨車出發(fā)xh后,貨車、轎車分別到達離甲地y1km和y2km的地方,圖中的線段OA、折線BCDE分別表示y1、y2與x之間的函數關系.
(1)求點D的坐標,并解釋點D的實際意義;
(2)求線段DE所在直線的函數表達式;
(3)當貨車出發(fā)________h時,兩車相距200km.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com