【題目】如圖,在△ABC中,AC=4,BC=2,點(diǎn)D是邊AB上一點(diǎn),CD將△ABC分成△ACD和△BCD,若△ACD是以AC為底的等腰三角形,且△BCD與△BAC相似,則CD的長(zhǎng)為( )
A.
B.2
C.4 ﹣4
D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn)
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使kx+b< 成立的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是等邊三角形,點(diǎn)D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊.
如圖,點(diǎn)D在線段BC上移動(dòng)時(shí),直接寫出和的大小關(guān)系;
如圖圖,點(diǎn)D在線段BC的延長(zhǎng)線上或反向延長(zhǎng)線上移動(dòng)時(shí),猜想的大小是否發(fā)生變化,若不變請(qǐng)直接寫出結(jié)論并選擇其中一種圖示進(jìn)行證明;若變化,請(qǐng)分別寫出圖、圖所對(duì)應(yīng)的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)12016 + 3.14 π 0
(2) 3a2 3 2a a5
(3) x 2 x 1 3xx 1
(4)2a b c2a b c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在讀數(shù)月活動(dòng)中學(xué)校準(zhǔn)備購(gòu)買一批課外讀物,為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類)。下圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖。
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名同學(xué);
(2)條形統(tǒng)計(jì)圖中;
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀數(shù)所在扇形的圓心角是 度;
(4)學(xué)校計(jì)劃購(gòu)買課外讀物8000冊(cè),請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購(gòu)買其他類讀數(shù)多少冊(cè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題
(1)【問題提出】如圖1.△ABC是等邊三角形,點(diǎn)D在線段AB上.點(diǎn)E在直線BC上.且∠DEC=∠DCE.求證:BE=AD;
(2)【類比學(xué)習(xí)】如圖2.將條件“點(diǎn)D在線段AB上”改為“點(diǎn)D在線段AB的延長(zhǎng)線上”,其他條件不變.判斷線段AB,BE,BD之間的數(shù)量關(guān)系,并說明理由.
(3)【擴(kuò)展探究】如圖3.△ABC是等腰三角形,AB=AC,∠BAC=120°,點(diǎn)D在線段AB的反向延長(zhǎng)線上,點(diǎn)E在直線BC上,且∠DEC=∠DCE,【類比學(xué)習(xí)】中的線段AB、BE、BD之間的數(shù)量關(guān)系是否還成立?若成立,請(qǐng)說明理由;若不成立,請(qǐng)直接寫出線段AB,BE,BD之間的數(shù)量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】看圖填空:已知如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,
求證:AD平分∠BAC.
證明:∵AD⊥BC于D,EG⊥BC于G( 已知 )
∴∠ADC=90°,∠EGC=90°(___________)
∴∠ADC=∠EGC(等量代換)
∴AD∥EG(_____________)
∴∠1=∠2(___________)
∠E=∠3(___________)
又∵∠E=∠1( 已知)
∴∠2=∠3(___________)
∴AD平分∠BAC(___________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種新運(yùn)算“a☆b”的含義為:當(dāng)a≥b時(shí),a☆b=a+b;當(dāng)a<b時(shí),a☆b=a-b.例如:3☆(-4)=3+(-4)=-1,(-6)☆=-6-=-6.
(1)填空:(-4)☆3=______;
(2)如果(3x-4)☆(2x+8)=(3x-4)-(2x+8),求x的取值范圍;
(3)如果(3x-7)☆(3-2x)=2,求x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com