【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn)

(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出使kx+b< 成立的x的取值范圍;
(3)求△AOB的面積.

【答案】
(1)解:∵點(diǎn)A(m,6),B(3,n)兩點(diǎn)在反比例函數(shù)y= (x>0)的圖象上,

∴m=1,n=2, 即A(1,6),B(3,2). 又∵點(diǎn)A(m,6),B(3,n)兩點(diǎn)在一次函數(shù)y=kx+b的圖象上,

. 解得 ,
則該一次函數(shù)的解析式為:y=﹣2x+3


(2)解:根據(jù)圖象可知使kx+b< 成立的x的取值范圍是0<x<1或x>2;

(3)解:分別過點(diǎn)A、B作AE⊥x軸,BC⊥x軸,垂足分別是E、C點(diǎn).直線AB交x軸于D點(diǎn).

令﹣2x+8=0,得x=4,即D(4,0).

∵A(1,6),B(3,2), 則 =4×6÷2-4×2÷2=12-4=8


【解析】 (1)先將點(diǎn)A、B的坐標(biāo)分別代入反比例函數(shù)解析式求出這兩點(diǎn)坐標(biāo),再利用待定系數(shù)法,求出一次函數(shù)的解析式。
(2)要求一次函數(shù)值小于反比例函數(shù)值,要看直線x=1,直線x=3,兩條直線將兩函數(shù)分成三部分,這三部分的自變量的取值范圍分別是0<x<1、x>3.1<<3,即可觀察一次函數(shù)圖象在反比例函數(shù)圖象下方時所對應(yīng)的x的取值范圍。
(3)添加輔助線,分別過點(diǎn)A、B作AE⊥x軸,BC⊥x軸,垂足分別是E、C點(diǎn).直線AB交x軸于D點(diǎn)。先求出點(diǎn)D的坐標(biāo),然后根據(jù),即可求出結(jié)果;蜻^點(diǎn)A作AE⊥x軸,交OB于點(diǎn)H,△OAB的面積=△OAH的面積+△HAB的面積.
【考點(diǎn)精析】掌握確定一次函數(shù)的表達(dá)式和反比例函數(shù)的性質(zhì)是解答本題的根本,需要知道確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中, 三個頂點(diǎn)坐標(biāo)分別為.

(1)請畫出關(guān)于軸對稱的圖形;

(2)的三個頂點(diǎn)的橫坐標(biāo)與縱坐標(biāo)同時乘,得到對應(yīng)的點(diǎn)、,請畫出 ;

(3)的面積比,即=________(不寫解答過程,直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】抗震救災(zāi)中,某縣糧食局為了保證庫存糧食的安全,決定將甲、乙兩個倉庫的糧食,全部轉(zhuǎn)移到具有較強(qiáng)抗震功能的AB兩倉庫.已知甲庫有糧食100噸,乙?guī)煊屑Z食80噸,而A庫的容量為70噸,B庫的容量為110噸.從甲、乙兩庫到A、B兩庫的路程和運(yùn)費(fèi)如下表:(表中“元/噸千米”表示每噸糧食運(yùn)送1千米所需人民幣)

路程(千米)

運(yùn)費(fèi)(元/噸千米)

甲庫

乙?guī)?/span>

甲庫

乙?guī)?/span>

A

20

15

12

12

B

25

20

10

8

1)若甲庫運(yùn)往A庫糧食x噸,請寫出將糧食運(yùn)往A、B兩庫的總運(yùn)費(fèi)y(元)與x(噸)的函數(shù)關(guān)系式;

2)當(dāng)甲、乙兩庫各運(yùn)往AB兩庫多少噸糧食時,總運(yùn)費(fèi)最省,最省的總運(yùn)費(fèi)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:點(diǎn)E∠AOB的平分線上一點(diǎn),ED⊥OA,EC⊥OB,垂足分別為C、D.

求證:(1)OC=OD;

(2)OE是線段CD的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,三個內(nèi)角的平分線交于點(diǎn),過點(diǎn),交邊于點(diǎn)

1)如圖,若∠ABC=40°,則∠AOC= ,∠ADO= ;

2)猜想的關(guān)系,并說明你的理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次軍事演習(xí)中,藍(lán)方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進(jìn)實施攔截,紅方行駛1000米到達(dá)C處后,因前方無法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進(jìn)了相同的距離,剛好在D處成功攔截藍(lán)方,求攔截點(diǎn)D處到公路的距離(結(jié)果不取近似值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖有A、B、C三地依次在一條筆直的公路上,A、B兩地相距40km,一輛甲車以40km/h的速度從B地到C地;同時一輛乙車以80km/h的速度從B地開往A地,到達(dá)A地后,然后以120km/h的速度開往C地,兩車在各段內(nèi)均勻速行駛,圖中線段EF與折線EMN分別表示甲、乙兩車距C地的路程y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象.

(1)寫出點(diǎn)M的坐標(biāo)為_______;點(diǎn)E的縱坐標(biāo)的意義是________.

(2)請直接寫出n,b的值,并求出線段EFMN的函數(shù)關(guān)系式;

(3)兩車出發(fā)幾小時后,乙車追上甲車?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】密蘇里州圣路易斯拱門是座雄偉壯觀的拋物線形的建筑物,是美國最高的獨(dú)自挺立的紀(jì)念碑,如圖.拱門的地面寬度為200米,兩側(cè)距地面高150米處各有一個觀光窗,兩窗的水平距離為100米,求拱門的最大高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=4,BC=2,點(diǎn)D是邊AB上一點(diǎn),CD將△ABC分成△ACD和△BCD,若△ACD是以AC為底的等腰三角形,且△BCD與△BAC相似,則CD的長為( )

A.
B.2
C.4 ﹣4
D.

查看答案和解析>>

同步練習(xí)冊答案