【題目】在平面直角坐標(biāo)系內(nèi),雙曲線:y= (x>0)分別與直線OA:y=x和直線AB:y=﹣x+10,交于C,D兩點(diǎn),并且OC=3BD.
(1)求出雙曲線的解析式;
(2)連結(jié)CD,求四邊形OCDB的面積.
【答案】
(1)解:過點(diǎn)A、C、D作x軸的垂線,垂足分別是M、E、F,
∴∠AMO=∠CEO=∠DFB=90°,
∵直線OA:y=x和直線AB:y=﹣x+10,
∴∠AOB=∠ABO=45°,
∴△CEO∽△DEB
∴ = =3,
設(shè)D(10﹣m,m),其中m>0,
∴C(3m,3m),
∵點(diǎn)C、D在雙曲線上,
∴9m2=m(10﹣m),
解得:m=1或m=0(舍去)
∴C(3,3),
∴k=9,
∴雙曲線y= (x>0)
(2)解:由(1)可知D(9,1),C(3,3),B(10,0),
∴OE=3,EF=6,DF=1,BF=1,
∴S四邊形OCDB=S△OCE+S梯形CDFE+S△DFB
= ×3×3+ ×(1+3)×6+ ×1×1=17,
∴四邊形OCDB的面積是17
【解析】(1)過點(diǎn)A、C、D作x軸的垂線,垂足分別是M、E、F,由直線y=x和y=﹣x+10可知∠AOB=∠ABO=45°,證明△CEO∽△DEB,從而可知 = =3,然后設(shè)設(shè)D(10﹣m,m),其中m>0,從而可知C的坐標(biāo)為(3m,3m),利用C、D在反比例函數(shù)圖象上列出方程即可求出m的值.(2)求分別求出△OCE、△DFB△、梯形CDFE的面積即可求出答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)P是等邊△ABC內(nèi)一點(diǎn),PA=3,PB=4,PC=5,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛貨車和一輛小轎車同時(shí)從甲地出發(fā),貨車勻速行駛至乙地,小轎車中途停車休整2h后提速行駛至乙地.設(shè)行駛時(shí)間為x( h),貨車的路程為y1( km),小轎車的路程為y2( km ),圖中的線段OA與折線OBCD分別表示y1,y2與x之間的函數(shù)關(guān)系.
(1)甲乙兩地相距_____km,m=_____;
(2)求線段CD所在直線的函數(shù)表達(dá)式;
(3)小轎車停車休整后還要提速行駛多少小時(shí),與貨車之間相距20km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于點(diǎn)O,∠AOE=∠DOF=90°,OP是∠BOC的平分線,∠AOD=40°.
(1)求∠EOP的度數(shù);
(2)寫出∠AOD的補(bǔ)角和余角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)(-15)÷(-3);
(2)(-12)÷(-);
(3)(-0.75)÷0.25;
(4)(-12)÷(-)÷(-100).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)E,F之間距離是10cm,求AB,CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為Q(2,﹣1),且與y軸交于點(diǎn)C(0,3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是該拋物線上的一動點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(點(diǎn)P與A不重合),過點(diǎn)P作PD∥y軸,交AC于點(diǎn)D.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)當(dāng)△ADP是直角三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)在題(2)的結(jié)論下,若點(diǎn)E在x軸上,點(diǎn)F在拋物線上,問是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:線段AB=20cm.
(1)如圖1,點(diǎn)P沿線段AB自A點(diǎn)向B點(diǎn)以2厘米/秒運(yùn)動,點(diǎn)P出發(fā)2秒后,點(diǎn)Q沿線段BA自B點(diǎn)向A點(diǎn)以3厘米/秒運(yùn)動,問再經(jīng)過幾秒后P、Q相距5cm?
(2)如圖2:AO=4厘米,PO=2厘米,∠POB=60°,點(diǎn)P繞著點(diǎn)O以60°/秒的速度逆時(shí)針旋轉(zhuǎn)一周停止,同時(shí)點(diǎn)Q沿直線BA自B點(diǎn)向A點(diǎn)運(yùn)動,假若點(diǎn)P、Q兩點(diǎn)能相遇,求點(diǎn)Q運(yùn)動的速度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com