【題目】已知拋物線:y=ax2+bx+c(a<0)經過A(2,4)、B(﹣1,1)兩點,頂點坐標為(h,k),則下列正確結論的序號是 .
①b>1;②c>2;③h<;④k≤1
科目:初中數學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,BC是⊙O的直徑,D是劣弧的中點BD交AC于點E.
(1)求證:AD2=DEDB.
(2)若BC=5,CD=,求DE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于、兩點,與軸交于點,對稱軸為直線,點的坐標為.
(1)求該拋物線的表達式及頂點坐標;
(2)點為拋物線上一點(不與點重合),聯結.當時,求點的坐標;
(3)在(2)的條件下,將拋物線沿平行于軸的方向向下平移,平移后的拋物線的頂點為點,點的對應點為點,當時,求拋物線平移的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角梯形ABCD中,∠ADC=90°,AD∥BC,點E在BC上,點F在AC上,∠DFC=∠AEB.
(1)求證:△ADF∽△CAE;
(2)當AD=8,DC=6,點E、F分別是BC、AC的中點時,求BC的長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】知識改變世界,科技改變生活.導航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學生乘車到黑龍灘(用C表示)開展社會實踐活動,車到達A地后,發(fā)現C地恰好在A地的正北方向,且距離A地13千米,導航顯示車輛應沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達C地,求B、C兩地的距離.(參考數據:sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題的提出:
如果點P是銳角△ABC內一動點,如何確定一個位置,使點P到△ABC的三頂點的距離之和PA+PB+PC的值為最小?
問題的轉化:
(1)把ΔAPC繞點A逆時針旋轉60度得到連接這樣就把確定PA+PB+PC的最小值的問題轉化成確定的最小值的問題了,請你利用如圖證明:
;
問題的解決:
(2)當點P到銳角△ABC的三項點的距離之和PA+PB+PC的值為最小時,請你用一定的數量關系刻畫此時的點P的位置:_____________________________;
問題的延伸:
(3)如圖是有一個銳角為30°的直角三角形,如果斜邊為2,點P是這個三角形內一動點,請你利用以上方法,求點P到這個三角形各頂點的距離之和的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣x+1與x軸,y軸分別交于A,B兩點,拋物線y=ax2+bx+c過點B,并且頂點D的坐標為(﹣2,﹣1).
(1)求該拋物線的解析式;
(2)若拋物線與直線AB的另一個交點為F,點C是線段BF的中點,過點C作BF的垂線交拋物線于點P,Q,求線段PQ的長度;
(3)在(2)的條件下,點M是直線AB上一點,點N是線段PQ的中點,若PQ=2MN,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)觀察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數量關系是 ,位置關系是 .
(2)探究證明:
在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.
(3)拓展延伸:
如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,對稱軸為直線x=1的拋物線y=ax2+bx+8過點(﹣2,0).
(1)求拋物線的表達式,并寫出其頂點坐標;
(2)現將此拋物線沿y軸方向平移若干個單位,所得拋物線的頂點為D,與y軸的交點為B,與x軸負半軸交于點A,過B作x軸的平行線交所得拋物線于點C,若AC∥BD,試求平移后所得拋物線的表達式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com