圖中圖(1)是一個10×10格點正方形組成的網格.△ABC是格點三角形(頂點在網格交點處),請你完成下面的兩個問題:

(1)在圖(1)中畫出與△ABC相似的格點△A1B1C1和△A2B2C2,且△A1B1C1與△ABC的相似比是2,△A2B2C2與△ABC的相似比是;

(2)在圖(2)中用與△ABC、△A1B1C1、△A2B2C2全等的格點三角形(每個三角形至少使用一次),拼出一個你熟悉的圖案,并為你設計的圖案配一句貼切的解說詞.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

請閱讀下列材料:
問題:現(xiàn)有5個邊長為1的正方形,排列形式如圖①,請把它們分割后拼接成一個新的正方形,要求:畫出分割線并在正方形網格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.
小東同學的做法是:設新正方形的邊長為x(x>0),依題意,割補前后圖形的面積相等,有x2=5,解得x=
5
,由此可知新正方形得邊長等于兩個小正方形組成得矩形對角線得長,于是,畫出如圖②所示的分割線,拼出如圖③所示的新正方形.精英家教網
請你參考小東同學的做法,解決如下問題:
現(xiàn)有10個邊長為1的正方形,排列形式如圖④,請把它們分割后拼接成一個新的正方形,要求:在圖④中畫出分割線,并在圖⑤的正方形網格圖(圖中每個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.(說明:直接畫出圖形,不要求寫分析過程.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)在2004年6月的日歷中(見圖),任意圈出一豎列上相鄰的三個數(shù),設中間的一個為a,則用含a的代數(shù)式表示這三個數(shù)(從小到大排列)分別是
 
;
(2)連續(xù)的自然數(shù)1至2004按圖中的方式派成一個長方形陣列,用一個正方形框出16個數(shù)(如圖)
①圖中框出的這16個數(shù)之和是
 

②在上圖中,要使一個正方形框出的16個數(shù)之和分別等于2000、2004,是否可能?若不可能,試說明理由.若有可能,請求出該正方形框出的16個數(shù)中的最小數(shù)與最大數(shù).
精英家教網

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

27、我們約定,若一個三角形(記為△A1)是由另一個三角形(記為△A)通過一次平移,或繞其任一邊的中點旋轉180°得到的,則稱△A1是由△A復制的.以下的操作中每一個三角形只可以復制一次,復制過程可以一直進行下去.如圖1是由△A復制出△A1,又由△A1復制出△A2,再由△A2復制出△A3,形成了一個大三角形,記作△B.以下各題中的復制均是由△A開始的,由復制形成的多邊形中的任意兩個小三角形(指與△A全等的三角形)之間既無縫隙也無重疊.
(1)圖1中標出的是一種可能的復制結果,它用到
1
次平移,
2
次旋轉.小明發(fā)現(xiàn)△B∽△A,其相似比為
2:1
.若由復制形成的△C的一條邊上有11個小三角形(指有一條邊在該邊上的小三角形),則△C中含有
121
個小三角形;
(2)若△A是正三角形,你認為通過復制能形成的正多邊形是
正三邊形、正六邊形
;
(3)在復制形成四邊形的過程中,小明用到了兩次平移一次旋轉,你能用兩次旋轉一次平移復制形成一個四邊形嗎?如果能,請在圖2的方框內畫出草圖,并仿照圖1作出標記;如果不能,請說明理由;
(4)圖3是正五邊形EFGHI,其中心是O,連接O點與各頂點.將其中的一個三角形記為△A,小明認為正五邊形EFGHI是由復制形成的一種結果,你認為他的說法對嗎?請判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(1)求值:
8
-8×
1
2
+(-
1
2
)-2
,
(2)在正方形方格紙中,我們把頂點都在“格點”上的三角形稱為“格點三角形”,如圖,△ABC是一個格點三角形.
①請你在所給的方格紙中,以O為位似中心,將△ABC放大為原來的2倍,得到一個△A1B1C1
②若每一個方格的面積為1,則△A1B1C1的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

寫出下列事件發(fā)生的可能性,并標在圖中的大致位置上.
(1)袋中有10個紅球,摸到紅球;
(2)袋中有10個紅球,摸到白球;
(3)從一副混合均勻的撲克牌中(除去大、小.從中任意抽取一張,這一張恰好是A;
(4)一個布袋中有2個黑球和2個白球,從中任意摸出一個球,恰好是黑球;
(5)任意擲出一個質地均勻的小立方體(每個面上分別標有數(shù)字1,2,3,4,5,6),朝上一面的數(shù)字大于2.

查看答案和解析>>

同步練習冊答案