【題目】填空完成下列推理過程

已知:如圖,BDAC,EFAC,點DF分別是垂足,∠1=∠4

試說明:∠ADG=∠C

解:∵BDAC,EFAC(已知)

∴∠290°390°(垂直的定義)

∴∠2=∠3(等量代換)

BDEF   

∴∠4=∠5(兩直線平行同位角相等)

∵∠1=∠4(已知)

1=∠5   

DGCB(內(nèi)錯角相等兩直線平行)

∴∠ADG=∠C   

【答案】同位角相等,兩直線平行,等量代換,兩直線平行,同位角相等.

【解析】

熟悉平行線的性質(zhì)和判定,能正確運用語言敘述理由即可.

解:∵BDAC,EFAC(已知)

∴∠290°390°(垂直的定義)

∴∠2=∠3(等量代換)

BDEF(同位角相等,兩直線平行)

∴∠4=∠5(兩直線平行同位角相等)

∵∠1=∠4(已知)

∴∠1=∠5 (等量代換)

DGCB(內(nèi)錯角相等兩直線平行)

∴∠ADG=∠C(兩直線平行,同位角相等)

故答案為:(同位角相等,兩直線平行),(等量代換),(兩直線平行,同位角相等).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】,是Rt△ABC的三邊,且,是斜邊上的高,則下列說法中正確的有幾個( )

(1),, 能組成三角形

(2),, 能組成三角形

(3), 能組成直角三角形

(4),,能組成直角三角形

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】揚州某中學七年級一班 40 名同學第二次為四川災區(qū)捐款,共捐款 2000 元,捐款情況如下表:

捐款(元)

20

40

50

100

人數(shù)

10

8

表格中捐款 40 元和 50 元的人數(shù)不小心被墨水污染已看不清楚、若設(shè)捐款 40 元的有 x 名同學,捐款 50 元的有y 名同學,根據(jù)題意,可得方程組(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點O,∠ABC=60°,點EAB的中點,連接CE、OE,若AB=2BC,下列結(jié)論:①∠ACD=30°BC=4,BD=;③CD=4OE;④SCOE=S四邊形ABCD.其中正確的個數(shù)有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】出租車司機小張某天上午勞動線路是在南北走向的公路上進行的,如果規(guī)定向南為正,向北為負,他這天上午行車里程(單位:千米)如下:,,,,,,,

1)將最后一名乘客送到目的地時,小張距上午出發(fā)時的出發(fā)點多遠?在出發(fā)點的南邊還是北邊?

2)若汽車耗油量為/千米,這天上午汽車耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠1=3CDEF,試說明∠1=4.請將過程填寫完整.

解:∵∠1=3,

又∠2=3(_______),

∴∠1=____

____________(_______),

又∵CDEF

AB_____,

∴∠1=4(兩直線平行,同位角相等).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊BC上一點,連接DE,將DE繞著點E逆時針旋轉(zhuǎn)90°,得到EG,過點GGFCB,垂足為F,GHAB,垂足為H,連接DG,交ABI

1)求證:四邊形BFGH是正方形;

2)求證:ED平分∠CEI;

3)連接IE,若正方形ABCD的邊長為3,則BEI的周長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】無錫陽山地區(qū)有A、B兩村盛產(chǎn)水蜜桃,現(xiàn)A村有水蜜桃200噸,B村有水蜜桃300.計劃將這些水蜜桃運到C、D兩個冷藏倉庫,已知C倉庫可儲存240噸,D倉庫可儲存260噸;從A村運往C、D兩處的費用分別為每噸20元和25元,從B村運往C,D兩處的費用分別為每噸15元和18.設(shè)從A村運往C倉庫的水蜜桃重量為x噸,A、B兩村運往兩倉庫的水蜜桃運輸費用分別為yA元和yB.

1)請先填寫下表,再根據(jù)所填寫內(nèi)容分別求出yA、yBx之間的函數(shù)關(guān)系式;

收地運地

C

D

總計

A

x

______

200

B

______

______

300

總計

240

260

500

2)試討論AB兩村中,哪個村的運費較少;

3)考慮到B村的經(jīng)濟承受能力,B村的水蜜桃運費不得超過4830元,在這種情況下,請問怎樣調(diào)運,才能使兩村運費之和最小?求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2

方程 的兩個根是x1=1,x2=3;

③3a+c0

y0時,x的取值范圍是﹣1≤x3

x0時,yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習冊答案