【題目】如圖,建筑物C在觀測點A的北偏東65°方向上,從觀測點A出發(fā)向南偏東40°方向走了130m到達觀測點B,此時測得建筑物C在觀測點B的北偏東20°方向上,求觀測點B與建筑物C之間的距離.(結果精確到0.1m.參考數(shù)據(jù):≈1.73)

【答案】觀測點B與建筑物C之間的距離約為177.5m

【解析】試題過AADBCD.解RtADB,求出DB=AB=65m,AD=BD=65m.再解RtADC,得出CD=AD=65m,根據(jù)BC=BD+CD即可求解.

試題解析:解:如圖,過AADBCD.根據(jù)題意,得ABC=40°+20°=60°,AB=130m

RtADB中,∵∠DAB=30°,∴DB=AB=×130=65m,AD=BD=65m

∵∠BAC=180°﹣65°﹣40°=75°,∴∠C=180°﹣∠ABC﹣∠BAC=180°﹣60°﹣75°=45°.

RtADC中,∵tanC==1,∴CD=AD=65m,∴BC=BD+CD=65+65≈177.5m

故觀測點B與建筑物C之間的距離約為177.5m

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=3,點E,F(xiàn)分別在CD,AD上,CE=DF,BE,CF相交于點G.若圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則BCG的周長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(10分)如圖,△ABC中,邊AB、AC的垂直平分線分別交BCD、E.

(1)若BC=10,則△ADE周長是多少?為什么?

(2)若∠BAC=128°,則∠DAE的度數(shù)是多少?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)1~5月份利潤的變化情況圖所示,以下說法與圖中反映的信息相符的是(    )

A. 1~3月份利潤的平均數(shù)是120萬元

B. 1~5月份利潤的眾數(shù)是130萬元

C. 1~5月份利潤的中位數(shù)為120萬元

D. 1~2月份利潤的增長快于2~3月份利潤的增長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,在長方形ABCD中,AB=5,第一次平移將長方形ABCD沿AB方向向右平移4個單位長度,得到長方形A1B1C1D1,第二次平移將長方形A1B1C1D1沿A1B1方向向右平移4個單位長度,得到長方形A2B2C2D2,……,第n次平移將長方形An-1Bn-1Cn-1Dn-1沿An-1Bn-1方向向右平移4個單位長度,得到長方形AnBnCnDn(n2).若ABn的長為45,則n=(  )

A.10B.11C.16D.9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 在多項式的乘法公式中,完全平方公式是其中重要的一個.

1)請你補全完全平方公式的推導過程:

(a+b)2=(a+b)(a+b)=a2+______+______+b2=a2+______+b2

2)如圖,將邊長為a+b的正方形分割成I,Ⅱ,Ⅲ,Ⅳ四部分,請用不同的方法分別表示出這個正方形的面積,并結合圖形給出完全平方公式的幾何解釋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90o,AB=AD,AE=AC, AF⊥CF,垂足為F.

(1)若AC=10,求四邊形ABCD的面積;

(2)求證:AC平分∠ECF;

(3)求證:CE=2AF .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為調動銷售人員的積極性,A、B兩公司采取如下工資支付方式:A公司每月2000元基本工資,另加銷售額的2%作為獎金;B公司每月1600元基本工資,另加銷售額的4%作為獎金。已知A、B公司兩位銷售員小李、小張1~6月份的銷售額如下表:

月份

銷售額

銷售額(單位:元)

1月

2月

3月

4月

5月

6月

小李(A公司)

11600

12800

14000

15200

16400

17600

小張(B公司

7400

9200

1100

12800

14600

16400

  1. 請問小李與小張3月份的工資各是多少?
  2. 小李1~6月份的銷售額與月份的函數(shù)關系式是小張1~6月份的銷售額也是月份的一次函數(shù),請求出的函數(shù)關系式;
  3. 如果7~12月份兩人的銷售額也分別滿足(2)中兩個一次函數(shù)的關系,問幾月份起小張的工資高于小李的工資。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩個大小不同的等腰直角三角板如圖1所示放置,圖2是由它抽象出的幾何圖形,圖中AB=AC,AD=AE,∠BAC=∠EAD=90°,B,C,E在同一條直線上,連結DC

(1)圖2中的全等三角形是_______________,并給予證明(說明:結論中不得含有未標識的字母);

2)指出線段DC和線段BE的關系,并說明理由.

查看答案和解析>>

同步練習冊答案