(2006•汾陽市)將一張紙片沿任一方向翻折,得到折痕AB(如圖1);再翻折一次,得到折痕OC(如圖2);翻折使OA與OC重合,得到折痕OD(如圖3);最后翻折使OB與OC重合,得到折痕OE(如圖4).展示恢復(fù)成圖1形狀,則∠DOE的大小是    度.
【答案】分析:折疊后,展示恢復(fù)成圖形狀,然后根據(jù)折疊的性質(zhì):對應(yīng)角相等計算.
解答:解:通過如圖折疊后,展示恢復(fù)成圖形狀,
∠C′OD=∠DOA=∠AOD′=∠D′OC,
∠COE′=∠E′OB∠EOB=∠EOC′
∴4∠C′OD+4∠C′OE=360°
∴∠DOE=∠C′OD+∠C′OE=90°.
點評:本題通過折疊變換考查學(xué)生的邏輯思維能力,解決此類問題,應(yīng)結(jié)合題意,最好實際操作圖形的折疊,易于找到圖形間的關(guān)系.注意圖中OB是向紙的背面折疊的.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標(biāo)軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山西省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標(biāo)軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山西省呂梁中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•汾陽市)如圖,已知拋物線C1與坐標(biāo)軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關(guān)于原點對稱的拋物線C2的解析式;
(2)設(shè)拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側(cè)),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關(guān)系式,并寫出自變量t的取值范圍;
(3)當(dāng)t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:填空題

(2006•汾陽市)甲、乙兩人進行羽毛球比賽,甲發(fā)出一顆十分關(guān)鍵的球,出手點為P,羽毛球飛行的水平距離s(米)與其距地面高度h(米)之間的關(guān)系式為h=-s2+s+.如圖,已知球網(wǎng)AB距原點5米,乙(用線段CD表示)扣球的最大高度為米,設(shè)乙的起跳點C的橫坐標(biāo)為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導(dǎo)致接球失敗,則m的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《函數(shù)基礎(chǔ)知識》(02)(解析版) 題型:選擇題

(2006•汾陽市)如圖,是某函數(shù)的圖象,則下列結(jié)論中正確的是( )

A.當(dāng)y=1時,x的取值是
B.當(dāng)y=-3時,x的近似值是0,2
C.當(dāng)時,函數(shù)值y最大
D.當(dāng)x>-3時,y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案