【題目】如圖,拋物線軸交于兩點,對稱軸與軸交于點,點,點,點是平面內(nèi)一動點,且滿足是線段的中點,連結(jié).則線段的最大值是________________

【答案】

【解析】

首先通過解方程得出點A的坐標(biāo),然后進一步根據(jù)拋物線性質(zhì)得出點CAB的中點,結(jié)合題意,利用勾股定理求出AQ,然后根據(jù)題意得出點P在以DE為直徑的圓上,圓心Q點的坐標(biāo)為(,0),圓Q的半徑為2,然后延長AQ較圓Q于點F,得出此時AF最大,再連接AP,利用三角形中位線性質(zhì)進一步求解即可.

解方程可得,

則:點A坐標(biāo)為(3,0),點B坐標(biāo)為(5,0),

∵拋物線的對稱軸與軸交于點C

∴點CAB的中點,

設(shè)DE的中點為Q,則Q點的坐標(biāo)為(0),

∴根據(jù)勾股定理可得:AQ=

∵∠DPE=90°,

∴點P在以DE為直徑的圓上,圓心Q點的坐標(biāo)為(,0),圓Q的半徑為2

如圖,延長AQ較圓Q于點F,此時AF最大,最大值為,

再連接AP,

∵點M是線段PB中點,

CM為△ABP的中位線,

CM=AP,

CM的最大值為:,

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生在假期中的課外閱讀情況,七(1)班針對“你最喜愛的課外閱讀書目“進行調(diào)查(每名學(xué)生必須選一類且只能選一類閱讀書目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.

1m__________,n__________;

2)扇形統(tǒng)計圖中科學(xué)類”所對應(yīng)扇形圓心角度數(shù)為__________°

3)從選哲學(xué)類的學(xué)生中,隨機選取兩名學(xué)生參加學(xué)校團委組織的辯論賽,請用樹狀圖或列表法求出所選取的兩名學(xué)生都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是直線與反比例函數(shù)為常數(shù))的圖象的交點.過點軸的垂線,垂足為,且

1)求點的坐標(biāo)及的值;

2)已知點,過點作平行于軸的直線,交直線于點,交反比例函數(shù)為常數(shù))的圖象于點,交垂線于點.若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小宇設(shè)計了一個隨機碰撞模擬器:在模擬器中有,三種型號的小球,它們隨機運動,當(dāng)兩個小球相遇時會發(fā)生碰撞(不考慮多個小球相撞的情況).若相同型號的兩個小球發(fā)生碰撞,會變成一個型小球;若不同型號的兩個小球發(fā)生碰撞,則會變成另外一種型號的小球,例如,一個型小球和一個型小球發(fā)生碰撞,會變成一個型小球.現(xiàn)在模擬器中有型小球12個,型小球9個,型小球10個,如果經(jīng)過各種兩兩碰撞后,最后只剩一個小球.以下說法:

①最后剩下的小球可能是型小球;

②最后剩下的小球一定是型小球;

③最后剩下的小球一定不是型小球.

其中正確的說法是:(

A.B.②③C.D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線My=-x2+2bx+c與直線ly=9x+14交于點A,其中點A的橫坐標(biāo)為-2

1)請用含有b的代數(shù)式表示c: ;

2)若點B在直線l上,且B的橫坐標(biāo)為-1,點C的坐標(biāo)為(b,5).

①若拋物線M還過點B,直接寫出該拋物線的解析式;

②若拋物線M與線段BC恰有一個交點,結(jié)合函數(shù)圖象,直接寫出b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,于點,過點與邊相切于點,交于點的直徑.

1)求證:;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,,以點為圓心,長為半徑在矩形內(nèi)畫弧,交邊于點,連接于點,則圖中陰影部分面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線AM上有一點B,AB6.點C是射線AM上異于B的一點,過CCDAM,且CDAC.過D點作DEAD,交射線AME. 在射線CD取點F,使得CFCB,連接AF并延長,交DE于點G.設(shè)AC3x

1 當(dāng)CB點右側(cè)時,求AD、DF的長.(用關(guān)于x的代數(shù)式表示)

2)當(dāng)x為何值時,△AFD是等腰三角形.

3)若將△DFG沿FG翻折,恰使點D對應(yīng)點落在射線AM上,連接.此時x的值為 (直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)問題發(fā)現(xiàn)如圖1,在中,,,,連接交于點.填空:①的值為______;②的度數(shù)為______

2)類比探究如圖2,在中,,,連接的延長線于點.請判斷的值及的度數(shù),并說明理由;

3)拓展延伸在(2)的條件下,將繞點在平面內(nèi)旋轉(zhuǎn),所在直線交于點,若,,請直接寫出當(dāng)點與點在同一條直線上時的長.

查看答案和解析>>

同步練習(xí)冊答案