如圖是我們分別從三個不同方向看一些幾何體時看到的圖形,請說出幾何體的名稱.
分析:由主視圖和左視圖確定是柱體,錐體還是球體,再由俯視圖確定具體形狀.
解答:解:(1)由主視圖和左視圖為矩形判斷出是柱體,由俯視圖是正方形可判斷出這個幾何體應該是長方體.

(2)由主視圖和左視圖為三角形判斷出是錐體,由俯視圖是圓形可判斷出這個幾何體應該是圓錐.
點評:本題考查了由三視圖判斷幾何體,主視圖和左視圖的大致輪廓為三角形的幾何體為錐體,俯視圖為圓就是圓錐.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
(1)等高線概念:在地圖上,我們把地面上海拔高度相同的點連成的閉合曲線叫等高線,
例如,如圖1,把海拔高度是50米,100米,150米的點分別連接起來,就分別形
成50米,100米,150米三條等高線.
(2)利用等高線地形圖求坡度的步驟如下:(如圖2)
步驟一:根據(jù)兩點A,B所在的等高線地形圖,分別讀出點A,B的高度;A,B兩點的
鉛直距離=點A,B的高度差;
步驟二:量出AB在等高線地形圖上的距離為d個單位,若等高線地形圖的比例尺為
1:m,則A,B兩點的水平距離=dn;
步驟三:AB的坡度=
鉛直距離
水平距離
=
點A,B的高度差
dn1
;
請按照下列求解過程完成填空.
某中學學生小明和小丁生活在山城,如圖3,小明每天上學從家A經(jīng)過B沿著公路AB,BP到學校P,小丁每天上學從家C沿著公路CP到學校P.該山城等高線地形圖的比例尺為:1:50000,在等高線地形圖上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米
(1)分別求出AB,BP,CP的坡度(同一段路中間坡度的微小變化忽略不計);
(2)若他們早晨7點同時步行從家出發(fā),中途不停留,誰先到學校?(假設(shè)當坡度在
1
10
1
8
之間時,小明和小丁步行的平均速度均約為1.3米/秒;當坡度在
1
8
1
6
之間
時,小明和小丁步行的平均速度均約為1米/秒)
解:(1)AB的水平距離=1.8×50000=90000(厘米)=900(米),AB的坡度=
200-100
900
=
1
9
;
BP的水平距離=3.6×50000=180000(厘米)=1800(米),BP的坡度=
400-200
1800
=
1
9

CP的水平距離=4.2×50000=210000(厘米)=2100(米),CP的坡度=
 

(2)因為
1
10
1
9
1
8
,所以小明在路段AB,BP上步行的平均速度均約為1.3米/秒,因為
 
,所以小丁在路段CP上步行的平均速度約為
 
米/秒,斜坡AB的距離=
9002+1002
=906(米),斜坡BP的距離=
18002+2002
=1811(米),斜坡CP的距離=
21002+3002
=2121(米),所以小明從家道學校的時間=
906+1811
1.3
=2090(秒).小丁從家到學校的時間約為
 
秒.因此,
 
先到學校.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,并解決后面的問題.
★閱讀材料:
(1)等高線概念:在地圖上,我們把地面上海拔高度相同的點連成的閉合曲線叫等高線.例如,如圖1,把海拔高度是50米、100米、150米的點分別連接起來,就分別形成50米、100米、150米三條等高線.
(2)利用等高線地形圖求坡度的步驟如下:(如圖2)
步驟一:根據(jù)兩點A、B所在的等高線地形圖,分別讀出點A、B的高度;A、B兩點的鉛直距離=點A、B的高度差;
步驟二:量出AB在等高線地形圖上的距離為d個單位,若等高線地形圖的比例尺為1:n,則A、B兩點的水平距離=dn;
步驟三:AB的坡度=60°;
請按照下列求解過程完成填空,并把所得結(jié)果直接寫在答題卡上.
某中學學生小明和小丁生活在山城,如圖3(示意圖),小明每天從家A經(jīng)過B沿著公路AB、BP到學校P,小丁每天上學從家C沿著公路CP到學校P.該山城等高線地形圖的比例尺為1:50000,在等高線地形圖上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米.
(1)分別求出AB、BP、CP的坡度(同一段路中間坡度的微小變化忽略不計);
(2)若他們早晨7點同時步行從家出發(fā),中途不停留,誰先到學校?(假設(shè)當坡度在60°到90°之間時,小明和小丁步行的平均速度均約為1.3米/秒;當坡度在60°到30°之間時,小明和小丁步行精英家教網(wǎng)的平均速度均約為1米/秒)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

(2012•青島模擬)同學們已經(jīng)認識了很多正多邊形,現(xiàn)以正六邊形為例再介紹與正多邊形相關(guān)的幾個概念.如正六邊形ABCDEF各邊對稱軸的交點O,又稱正六邊形的中心,其中OA稱正六邊形的半徑,通常用R表示,∠AOB稱為中心角,顯然.提出問題:正多邊形內(nèi)任意一點到各邊距離之和與這個正多邊形的半徑R和中心角有什么關(guān)系?
探索發(fā)現(xiàn):
(1)為了解決這個問題,我們不妨從最簡單的正多邊形--正三角形入手.
如圖①,△ABC是正三角形,半徑OA=R,∠AOB是中心角,P是△ABC內(nèi)任意一點,P到△ABC各邊距離分別為h1、h2、h3 ,確定h1+h2+h3的值與△ABC的半徑R及中心角的關(guān)系.
解:設(shè)△ABC的邊長是a,面積為S,顯然S=
1
2
a(h1+h2+h3
O為△ABC的中心,連接OA、OB、OC,它們將△ABC分成三個全等的等腰三角形,過點O作OM⊥AB,垂足為M,Rt△AOM中,易知
OM=OAcos∠AOM=Rcos
1
2
∠AOB=Rcos
1
2
×120°=Rcos60°,
AM=OAsin∠AOM=Rsin
1
2
∠AOB=Rsin
1
2
×120°=Rcos60°
∴AB=a=2AM=2Rsin60°
∴S△AOB=
1
2
AB×OM=
1
2
×2Rsin60°•Rcos60°=R2sin60°cos60°
∴S△ABC=3S△AOB=3R2sin60°cos60°
1
2
a(h1+h2+h3)=3R2sin60°cos60°
即:
1
2
×2Rsin60°(h1+h2+h3)=3R2sin60°cos60°
∴h1+h2+h3=3Rcos60°
(2)如圖②,五邊形ABCDE是正五邊形,半徑是R,P是正五邊形ABCDE內(nèi)任意一點,P到五邊形ABCDE各邊距離分別為h1、h2、h3、h4、h5,參照(1)的探索過程,確定h1+h2+h3+h4+h5的值與正五邊形ABCDE的半徑R及中心角的關(guān)系.
(3)類比上述探索過程,直接填寫結(jié)論
正六邊形(半徑是R)內(nèi)任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6=
6Rcos30°
6Rcos30°

正八邊形(半徑是R)內(nèi)任意一點P到各邊距離之和 h1+h2+h3+h4+h5+h6+h7+h8=
8Rcos22.5°
8Rcos22.5°

正n邊形(半徑是R)內(nèi)任意一點P到各邊距離之和  h1+h2+…+hn=
nRcos
180°
n
nRcos
180°
n

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,并解決后面的問題:
★閱讀材料:
(1) 等高線概念:在地圖上,我們把地面上海拔高度相同的點連成的閉合曲線叫等高線。
例如,如圖1,把海拔高度是50米、100米、150米的點分別連接起來,就分別形成50米、100米、150米三條等高線。
(2) 利用等高線地形圖求坡度的步驟如下:(如圖2)
步驟一:根據(jù)兩點A、B所在的等高線地形圖,分別讀出點A、B的高度;A、B兩點
的鉛直距離=點A、B的高度差;
步驟二:量出AB在等高線地形圖上的距離為d個單位,若等高線地形圖的比例尺為
1:n,則A、B兩點的水平距離=dn;
步驟三:AB的坡度==;

★請按照下列求解過程完成填空,并把所得結(jié)果直接寫在答題卡上。
某中學學生小明和小丁生活在山城,如圖3(示意圖),小明每天上學從家A經(jīng)過B沿著公路AB、BP到學校P,小丁每天上學從家C沿著公路CP到學校P。該山城等高線地形圖的比例尺為1:50000,在等高線地形圖上量得AB=1.8厘米,BP=3.6厘米,CP=4.2厘米。
(1) 分別求出AB、BP、CP的坡度(同一段路中間坡度的微小變化忽略不計);
(2) 若他們早晨7點同時步行從家出發(fā),中途不停留,誰先到學校?(假設(shè)當坡度在之間時,小明和小丁步行的平均速度均約為1.3米/秒;當坡度在之間時,小明和小丁步行的平均速度均約為1米/秒)
解:(1) AB的水平距離=1.8´50000=90000(厘米)=900(米),AB的坡度==;
BP的水平距離=3.6´50000=180000(厘米)=1800(米),BP的坡度==;
CP的水平距離=4.2´50000=210000(厘米)=2100(米),CP的坡度="  " j  ;
(2) 因為<<,所以小明在路段AB、BP上步行的平均速度均約為1.3米/秒。 因為 k  ,所以小丁在路段CP上步行的平均速度約為  l  米/秒,斜坡 AB的距離=»906(米),斜坡BP的距離=»1811(米),斜 坡CP的距離=»2121(米),所以小明從家到學校的時間==2090(秒)。
小丁從家到學校的時間約為  m  秒。因此,  n  先到學校。

查看答案和解析>>

同步練習冊答案