分析 (1)利用兩邊對(duì)應(yīng)成比例,夾角相等,兩三角形相似即可;
(2)連接BE,轉(zhuǎn)化出∠OEB=∠PCE,又由相似得出∠PEA=∠PCE,從而用直徑所對(duì)的圓周角是直角,轉(zhuǎn)化出∠OEP=90°即可;
(3)構(gòu)造全等三角形,先找出OD與PA的關(guān)系,再用等積式找出PE與PA的關(guān)系,從而判斷出OM=PE,得出△ODM≌△PDE即可.
解答 解:(1)∵PE2=PA•PC,
∴$\frac{PE}{PA}=\frac{PC}{PE}$,
∵∠APE=∠EPC,
∴△PAE∽△PEC;
(2)如圖1,
連接BE,
∴∠OBE=∠OEB,
∵∠OBE=∠PCE,
∴∠OEB=∠PCE,
∵△PAE∽△PEC,
∴∠PEA=∠PCE,
∴∠PEA=∠OEB,
∵AB為直徑,
∴∠AEB=90°,
∴∠OEB+∠OEA=90°,
∵∠PEA+∠OEA=90°,
∴∠OEP=90°,
∵點(diǎn)E在⊙O上,
∴PE是⊙O的切線;
(3)如圖,
過(guò)點(diǎn)O作OM⊥AC于M,
∴AM=$\frac{1}{2}$AC,
∵BC⊥AC,
∴OM∥BC,
∵∠ABC=30°,
∴∠AOM=30°,
∴OM=$\sqrt{3}$AM=$\frac{\sqrt{3}}{2}$AC,
∵AP=$\frac{1}{2}$AC,
∴OM=$\sqrt{3}$AP,
∵PC=AC+AP=2AP+AP=3AP,
∴PE2=PA×PC=PA×3PA,
∴PE=$\sqrt{3}$PA,
∴OM=PE,
∵∠PED=∠OMD=90°,∠ODM=∠PDE,
∴△ODM≌△PDE,
∴OD=DP.
點(diǎn)評(píng) 此題是圓的綜合題,主要考查了相似三角形的判定和性質(zhì),圓的性質(zhì),全等三角形的判定和學(xué)生,解本題的關(guān)鍵是構(gòu)造全等三角形,難點(diǎn)是找OD=PE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2k1 | B. | 2k2 | C. | k1+k2 | D. | k2-k1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$+1 | B. | -$\sqrt{5}$+1 | C. | $\sqrt{5}$ | D. | $\sqrt{5}$-1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=$\frac{1}{-x}$ | B. | y=$\frac{1}{5}$x+1 | C. | y=x2+1 | D. | y=$\sqrt{x}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com