【題目】定義:如果M個不同的正整數(shù),對其中的任意兩個數(shù),這兩個數(shù)的積能被這兩個數(shù)的和整除,則稱這組數(shù)為M個數(shù)的自然數(shù)組,如(3,6)為兩個數(shù)的自然數(shù)組,因為(3×6)能被(3+6)整除;又如(15,30,60)為三個數(shù)的自然數(shù)組,因為(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除…
(1)求證:2n和n(n﹣2)(n≥3,n為整數(shù))組成的數(shù)組是兩個數(shù)的自然數(shù)組;
(2)若(4a,5a,6a)是三個數(shù)的自然數(shù)組,求滿足條件的三位正整數(shù)a,并判斷(4a+5,5a+5,6a+5)是否為自然數(shù)組.
【答案】(1)詳見解析;(2)不是,理由詳見解析.
【解析】
(1)根據(jù)祖沖之?dāng)?shù)組的定義,即可解決問題;(2)首先根據(jù)定義判斷出a是5,9,11的公倍數(shù),由此即可解決問題.
(1)∵2nn(n-2)=2n2(n-2),而2n+n(n-2)=n2
且:2n2(n-2)能被n2整除,
∴2n和n(n-2)(n≥3,n為整數(shù))組成的數(shù)組是兩個數(shù)的自然數(shù)組.
(2)∵(4a,5a,6a)是三個數(shù)的自然數(shù)組,
∴,,都是整數(shù),
∴a是5、9、11的公倍數(shù),
∴5911=495,4952=990,
∴滿足條件的三位正整數(shù)a為495或990.
同理:當(dāng)a=990時不能整除,
故(4a+5,5a+5,6a+5)不是自然數(shù)組.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項工程,甲,乙兩公司合做,12天可以完成,共需付施工費102000元;如果甲,乙兩公司單獨完成此項工程,乙公司所用時間是甲公司的1.5倍,乙公司每天的施工費比甲公司每天的施工費少1500元.
(1)甲,乙兩公司單獨完成此項工程,各需多少天?
(2)若讓一個公司單獨完成這項工程,哪個公司的施工費較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條船上午點在處望見西南方向有一座燈塔(如圖),此時測得船和燈塔相距海里,船以每小時海里的速度向南偏西的方向航行到處,這時望見燈塔在船的正北方向.(參考數(shù)據(jù):,).
求幾點鐘船到達(dá)處;
求船到達(dá)處時與燈塔之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a使關(guān)于x的不等式組 有兩個整數(shù)解,且使關(guān)于x的方程有負(fù)數(shù)解,則符合題意的整數(shù)a的個數(shù)有 ( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(x>0,m≠0)的圖象交于點C,與x軸、y軸分別交于點D、B,已知OB=3,點C的橫坐標(biāo)為4,cos∠0BD=
(1)求一次函數(shù)及反比例函數(shù)的表達(dá)式;
(2)將一次函數(shù)圖象向下平移,使其經(jīng)過原點O,與反比例函數(shù)圖象在第四象限內(nèi)的交點為A,連接AC,求四邊形OACB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,OA=12cm,OB=8cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿BC方向勻速前進(jìn)攔截小球,恰好在點C處截住了小球.如果小球滾動的速度與機器人行走的速度相等,并且它們的運動時間也相等.
(1)請用直尺和圓規(guī)作出C處的位置,不必敘述作圖過程,保留作圖痕跡;
(2)求線段OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的直角坐標(biāo)系中,解答下列問題.
(1)分別寫出A、B兩點的坐標(biāo):A ,B .
(2)△ABC的面積= ;點B到AC的距離= .
(3)畫出△ABC關(guān)于x軸對稱的△A1B1C1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知和是兩個邊長都為的等邊三角形,且點,,,在同一直線上,連接,.
求證:四邊形是平行四邊形;
若沿著的方向勻速運動,不動,當(dāng)運動到點與點重合時,四邊形是什么特殊的四邊形?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com