【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.樂樂用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長或縮短單層部分的長度,可以使挎帶的長度(單層部分與雙層部分長度的和,其中調(diào)節(jié)扣所占的長度忽略不計)增長或縮短.經(jīng)測量,得到如下數(shù)據(jù):
單層部分的長度(cm) | … | 4 | 6 | 8 | 10 | … | 150 |
雙層部分的長度(cm) | … | 73 | 72 | 71 |
| … | 0 |
(1)根據(jù)上表中數(shù)據(jù)的規(guī)律,填寫表格中空白處的數(shù)據(jù);
(2)設(shè)單層部分的長度為xcm,請用含x的代數(shù)式表示出雙層部分的長度 cm;
(3)根據(jù)樂樂的身高和習(xí)慣,挎帶的長度為110cm時,背起來最舒適,請求出此時單層部分的長度.
【答案】(1)70;(2)y=﹣x+75cm;(3)70cm
【解析】
(1)根據(jù)規(guī)律即可得出結(jié)果;
(2)觀察表格可知,y是x的一次函數(shù),設(shè)y=kx+b,利用待定系數(shù)法即可解決問題;
(3)列出方程即可解決問題.
解:(1)根據(jù)單層部分的長度每增加2cm,雙層部分的長度減小1cm,可得當(dāng)單層部分的長度為10cm時,雙層部分的長度為70.
故答案為:70;
(2)觀察表格可知,y是x的一次函數(shù),設(shè)y=kx+b,
則有 ,解得,
∴y=﹣x+75.
故答案為:y=﹣x+75;
(3)根據(jù)題意得:
,
解得x=70.
答:挎帶的長度為110cm時,單層部分的長度為70cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線過點,直線:與直線交于點B,與x軸交于點C.
(1)求k的值;
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.
① 當(dāng)b=4時,直接寫出△OBC內(nèi)的整點個數(shù);
②若△OBC內(nèi)的整點個數(shù)恰有4個,結(jié)合圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:數(shù)學(xué)課上,老師給出了如下問題:如圖甲,∠AOB=70°,OC平分∠AOB.
若∠BOD=20°,請你補全圖形,并求∠COD的度數(shù).
以下是小明的解答過程:
解:如圖乙,因為OC平分∠AOB,∠AOB=70°,
所以∠BOC=____∠AOB=________°.
因為∠BOD=20°,
所以∠COD= °.
小靜說:“我覺得這個題有兩種情況,小明考慮的是OD在∠AOB外部的情況,事實上,OD還可能在∠AOB的內(nèi)部” .
完成以下問題:
(1)請你將小明的解答過程補充完整;
(2)根據(jù)小靜的想法,請你在圖甲中畫出另一種情況對應(yīng)的圖形,求出此時∠COD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四點A、B、C、D.
(1)用圓規(guī)和無刻度的直尺按下列要求與步驟畫出圖形:
①畫直線AB.
②畫射線DC.
③延長線段DA至點E,使.(保留作圖痕跡)
④畫一點P,使點P既在直線AB上,又在線段CE上.
(2)在(1)中所畫圖形中,若cm,cm,點F為線段DE的中點,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是線段AB上的一點,點M、N分別是線段AP、PB的中點.
(1)如圖1,若點P是線段AB的中點,且MP=4cm,求線段AB的長;
(2)如圖2,若點P是線段AB上的任一點,且AB=12cm,求線段MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若OC=3,OA=5,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x的對稱軸與x軸交于點A,點F在拋物線的對稱軸上,且點F的縱坐標(biāo)為.過拋物線上一點P(m,n)向直線y=作垂線,垂足為M,連結(jié)PF.
(1)當(dāng)m=2時,求證:PF=PM;
(2)當(dāng)點P為拋物線上任意一點時,PF=PM是否還成立?若成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年5月,我國南方某省A、B兩市遭受嚴(yán)重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用別為每噸15元和30元,設(shè)從D市運往B市的救災(zāi)物資為x噸.
(1)請?zhí)顚懴卤?/span>
A(噸) | B(噸) | 合計(噸) | |
C |
|
| 240 |
D |
| x | 260 |
總計(噸) | 200 | 300 | 500 |
(2)設(shè)C、D兩市的總運費為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”期間,小明一家乘坐高鐵前往某市旅游,計劃第二天租用新能源汽車自駕出游。
[來
根據(jù)以上信息,解答下列問題:
(1)設(shè)租車時間為小時,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出,關(guān)于的函數(shù)表達式;
(2)請你幫助小明計算并選擇哪個出游方案合算。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com