【題目】如圖,正方形的對角線交于點,分別在上()且,的延長線交于點,,的延長線交于點,連接.

1)求證:.

2)若正方形的邊長為4,的中點,求的長.

【答案】(1)見解析(2)

【解析】

1)證OAM≌△OBN即可得;

2)作OHAD,由正方形的邊長為4EOM的中點知OH=HA=2、HM=4,再根據(jù)勾股定理得OM=2,由直角三角形性質(zhì)知MN=OM

1)∵四邊形ABCD是正方形,

OA=OB,∠DAO=45°,∠OBA=45°

∴∠OAM=OBN=135°,

∵∠EOF=90°,∠AOB=90°,

∴∠AOM=BON,

∴△OAM≌△OBNASA),

OM=ON;

2)如圖,過點OOHAD于點H,

∵正方形的邊長為4

OH=HA=2,

EOM的中點,

HM=4,

OM=

MN=OM=2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某體育館用大小相同的長方形木板鑲嵌地面,第1次鋪2塊如圖①;第2次把第1次鋪的完全圍起來,如圖②,此時共使用木板12塊;第3次把第2次鋪的完全圍起來,如圖③:

1)依此方法,第4次鋪完后,共使用的木板數(shù)為______

2)依此方法,第10次鋪完后,共使用的木板數(shù)為______

3)依此方法,第n次鋪完后,共使用的木板數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動點P在平面直角坐標(biāo)系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(32),……,按這樣的運動規(guī)律,經(jīng)過第2019次運動后,動點P的坐標(biāo)是(  )

A. 2018,1B. 2018,0C. 2019,2 D. 2019,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點,點A坐標(biāo)為(a,0),點C的坐標(biāo)為(0,b),且a、b滿足|b6|0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著OCBAO的線路移動.

1a______________b_____________,點B的坐標(biāo)為_______________;

2)當(dāng)點P移動4秒時,請指出點P的位置,并求出點P的坐標(biāo);

3)在移動過程中,當(dāng)點Px軸的距離為5個單位長度時,求點P移動的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)(k>0)與正比例函數(shù)y=ax相交于A(1,k),B(﹣k,﹣1)兩點.

(1)求反比例函數(shù)和正比例函數(shù)的解析式;
(2)將正比例函數(shù)y=ax的圖象平移,得到一次函數(shù)y=ax+b的圖象,與函數(shù)(k>0)的圖象交于C(x1 , y1),D(x2 , y2),且|x1﹣x2||y1﹣y2|=5,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進(jìn)兩種型號的電腦共100臺,其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購進(jìn)A型電腦x臺,這100臺電腦的銷售總利潤為y元.

(1)求y關(guān)于x的函數(shù)關(guān)系式;

(2)該商店購進(jìn)A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?

(3)實際進(jìn)貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進(jìn)A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在中,的中點,,垂足為,交于點,且

1)求的度數(shù);

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,A=40°,ABC的外角∠CBD的平分線BEAC的延長線于點E.

(1)求∠CBE的度數(shù);

(2)過點DDFBE,交AC的延長線于點F,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,點F是射線DC上一動點(不與C,D重合).連接AF并延長交直線BC于點E,交BDH,連接CH,過點CCGHCAE于點G

1)若點F在邊CD上,如圖1

①證明:∠DAH=DCH;

②猜想:△GFC的形狀并說明理由.

2)取DF中點M,連接MG.若MG=2.5,正方形邊長為4,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案