如圖1,拋物線y=-
1
4
x2+
1
4
x+3
與直線y=-
1
4
x-
3
4
交于A、B兩點.如圖2,質(zhì)地均勻的正四面體骰子的各個面上依次標有數(shù)字-1、1、3、4.隨機拋擲這枚骰子兩次,把第一次著地一面的數(shù)字m記做P點的橫坐標,第二次著地一面的數(shù)字n記做P點的縱坐標,則點P(m,n)落在如圖1中的拋物線與直線圍成區(qū)域內(nèi)(圖中陰影部分,含邊界)的概率是
7
16
7
16
分析:隨機拋擲這枚骰子兩次,可能出現(xiàn)16種情況,出現(xiàn)在陰影中情況有7種,繼而即可求出概率.
解答:解:由拋物線與直線解析式可知,
當m=-1時,-
1
2
≤n≤
5
2

當m=1時,-1≤n≤
7
2
,
當m=3時,-
3
2
≤n≤
3
2
,
當m=4時,-
7
4
≤n≤0,
所有可能出現(xiàn)的結(jié)果如下:
第一次
第二次
-1 1 3 4
-1 (-1,-1) (-1,1) (-1,3) (-1,4)
1 (1,-1) (1,1) (1,3) (1,4)
3 (3,-1) (3,1) (3,3) (3,4)
4 (4,-1) (4,1) (4,3) (4,4)
總共有16種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,而落在圖1中拋物線與直線圍成區(qū)域內(nèi)的結(jié)果有7種:
(-1,1),(1,-1),(1,1),(1,3),(3,-1),(3,1),(4,-1).
因此P(落在拋物線與直線圍成區(qū)域內(nèi))=
7
16

故答案為:
7
16
點評:本題是一道二次函數(shù)的綜合題,考查了拋物線及概率等知識點,解答本題的關(guān)鍵是求出落在圖1中拋物線與直線圍成區(qū)域內(nèi)的7種結(jié)果.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)的圖象是經(jīng)過點A(1,0),B(3,0),E(0,6)三點的一條拋物線.
(1)求這條拋物線的解析式;
(2)如圖,設(shè)拋物線的頂點為C,對稱軸交x軸于點D,在y軸正半軸上有一點P,且以A、O、P為頂點的三角形與△ACD相似,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

精英家教網(wǎng)閱讀材料:如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=
12
ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內(nèi))上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)在(2)的條件下,設(shè)拋物線的對稱軸分別交AB、x軸于點D、M,連接PA、PB,當P點運動到頂點C時,求△CAB的鉛垂高CD及S△CAB;
(4)在(2)的條件下,設(shè)P點的橫坐標為x,△PAB的鉛垂高為h、面積為S,請分別寫出h和S關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)如圖1,矩形ABCD,點C與坐標原點O重合,點A在x軸上,點B坐標為(3,
3
),求經(jīng)過A、B、C三點拋物線的解析式;
(2)如圖2,拋物線E:y=-
1
2
x2+bx+c
經(jīng)過坐標原點O,其頂點在y軸左側(cè),以O(shè)為頂點作矩形OADC,A、C為拋物線E上兩點,若AC∥x軸,AD=2CD,則拋物線的解析式是
 
;
(3)如圖3,點A、B、C分別為拋物線F:y=ax2+bx+c(a<0)上的點,點B在對稱軸右側(cè),點D在拋物線外,順次連接A、B、C、D四點,所成四邊形為矩形,且AC∥x軸,AD=2CD,求矩形ABCD的周長(用含a的式子表示).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將拋物線y=-
1
2
x2
平移后經(jīng)過原點O和點A(6,0),平移后的拋物線的頂點為點B,對稱軸與拋物線y=-
1
2
x2
相交于點C,則圖中直線BC與兩條拋物線圍成的陰影部分的面積為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀材料:
如圖1,過△ABC的三個頂點分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高”(h).我們可得出一種計算三角形面積的新方法:S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.

解答下列問題:
如圖2,拋物線頂點坐標為點C(1,4),交x軸于點A(3,0),點P是拋物線(在第一象限內(nèi))上的一個動點.
(1)求拋物線的解析式;
(2)若點B為拋物線與y軸的交點,求直線AB的解析式;
(3)設(shè)點P是拋物線(第一象限內(nèi))上的一個動點,是否存在一點P,使S△PAB=S△CAB?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案