【題目】如圖,在平行四邊形ABCD中,∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F.試判斷AF與CE是否相等,并說(shuō)明理由.
【答案】AF=CE
【解析】
試題根據(jù)平行四邊形的性質(zhì)可得AD=CB,∠A=∠C,∠ADC=∠ABC,再結(jié)合角平分線的性質(zhì)可得∠ADF=∠CBE,即可根據(jù)“AAS”證得△ADF≌△CBE,問(wèn)題得證.
AF=CE.理由如下:
∵四邊形ABCD是平行四邊形,
∴AD=CB,∠A=∠C,∠ADC=∠ABC
∵∠ABC的平分線交CD于點(diǎn)E,∠ADC的平分線交AB于點(diǎn)F
∴∠ADF=∠ADC,∠CBE=∠ABC,
∴∠ADF=∠CBE,
∵在△ADF和△CBE中,
AD=CB,∠A=∠C,∠ADF=∠CBE
∴△ADF≌△CBE(AAS)
∴AF=CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為1的小圓與半徑為2的大圓上有一點(diǎn)與數(shù)軸上原點(diǎn)重合,兩圓在數(shù)軸上做無(wú)滑動(dòng)的滾動(dòng),小圓的運(yùn)動(dòng)速度為每秒π個(gè)單位,大圓的運(yùn)動(dòng)速度為每秒2π個(gè)單位.
(1)若大圓沿?cái)?shù)軸向左滾動(dòng)1周,則該圓與數(shù)軸重合的點(diǎn)所表示的數(shù)是 ;
(2)若小圓不動(dòng),大圓沿?cái)?shù)軸來(lái)回滾動(dòng),規(guī)定大圓向右滾動(dòng)時(shí)間記為正數(shù),向左滾動(dòng)時(shí)間記為負(fù)數(shù),依次滾動(dòng)的情況記錄如下(單位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8
①第幾次滾動(dòng)后,大圓離原點(diǎn)最遠(yuǎn)?
②當(dāng)大圓結(jié)束運(yùn)動(dòng)時(shí),大圓運(yùn)動(dòng)的路程共有多少?此時(shí)兩圓與數(shù)軸重合的點(diǎn)之間的距離是多少?(結(jié)果保留π)
(3)若兩圓同時(shí)在數(shù)軸上各自沿著某一方向連續(xù)滾動(dòng),滾動(dòng)一段時(shí)間后兩圓與數(shù)軸重合的點(diǎn)之間相距9π,求此時(shí)兩圓與數(shù)軸重合的點(diǎn)所表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十一”黃金周期間,某風(fēng)景區(qū)在7天假期中每天旅游的人數(shù)變化如下表(正數(shù)表示比前一天多的人數(shù),負(fù)數(shù)表示比前一天少的人數(shù))(單位:萬(wàn)人),其中9月30日的游客人數(shù)為2萬(wàn):
(1)請(qǐng)問(wèn)10月2日的游客人數(shù)為多少?
(2)請(qǐng)判斷7天內(nèi)游客人數(shù)最多的是哪天?最少的是哪天?它們相差多少萬(wàn)人?
(3)求這一次黃金周期間該風(fēng)景區(qū)游客總?cè)藬?shù).(假設(shè)每天游客都不重復(fù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2﹣4ax+3a.
(Ⅰ)求該二次函數(shù)的對(duì)稱軸;
(Ⅱ)若該二次函數(shù)的圖象開(kāi)口向下,當(dāng)1≤x≤4時(shí),y的最大值是2,且當(dāng)1≤x≤4時(shí),函數(shù)圖象的最高點(diǎn)為點(diǎn)P,最低點(diǎn)為點(diǎn)Q,求△OPQ的面積;
(Ⅲ)若對(duì)于該拋物線上的兩點(diǎn)P(x1,y1),Q(x2,y2),當(dāng)t≤x1≤t+1,x2≥5時(shí),均滿足y1≥y2,請(qǐng)結(jié)合圖象,直接寫出t的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下列材料:
關(guān)于x的方程:的解是,;即的解是;的解是,;的解是,;
請(qǐng)觀察上述方程與解的特征,比較關(guān)于x的方程與它們的關(guān)系,猜想它的解是什么?并利用“方程的解”的概念進(jìn)行驗(yàn)證.
由上述的觀察、比較、猜想、驗(yàn)證,可以得出結(jié)論:
如果方程的左邊是未知數(shù)與其倒數(shù)的倍數(shù)的和,方程的右邊的形式與左邊完全相同,只是把其中的未知數(shù)換成了某個(gè)常數(shù),那么這樣的方程可以直接得解,請(qǐng)用這個(gè)結(jié)論解關(guān)于x的方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小東設(shè)計(jì)的“作平行四邊形ABCD,使∠B=45°,AB=2cm,BC=3cm”的作圖過(guò)程.
(1)作法:如圖,①畫∠B=45°;
②在∠B的兩邊上分別截取BA=2cm,BC=3cm.
③以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫弧,以點(diǎn)為圓心,AB長(zhǎng)為半徑畫弧,兩弧相交于點(diǎn)D;則四邊形ABCD為所求的平行四邊形.
根據(jù)小東設(shè)計(jì)的作圖過(guò)程,
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)
(2)完成下面的證明.
證明:∵_______,_______,
∴四邊形ABCD為所求的平行四邊形.(____________)(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有20筐白菜,以每筐25千克為標(biāo)準(zhǔn),超過(guò)或不足的千克數(shù)分別用正、負(fù)數(shù)來(lái)表示,記錄如下:
與標(biāo)準(zhǔn)質(zhì)量的差值(單位:千克) | 0 | 1 | 2.5 | |||
筐數(shù) | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最輕的一筐多重多少千克?
(2)與標(biāo)準(zhǔn)重量比較,20筐白菜總計(jì)超過(guò)或不足多少千克?
(3)若白菜每千克售價(jià)2.8元,則出售這20筐白菜可賣多少元?(結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( 。
A. 要了解某公司生產(chǎn)的100萬(wàn)只燈泡的使用壽命,可以采用抽樣調(diào)查的方法
B. 4位同學(xué)的數(shù)學(xué)期末成績(jī)分別為100、95、105、110,則這四位同學(xué)數(shù)學(xué)期末成績(jī)的中位數(shù)為100
C. 甲乙兩人各自跳遠(yuǎn)10次,若他們跳遠(yuǎn)成績(jī)的平均數(shù)相同,甲乙跳遠(yuǎn)成績(jī)的方差分別為0.51和0.62
D. 某次抽獎(jiǎng)活動(dòng)中,中獎(jiǎng)的概率為表示每抽獎(jiǎng)50次就有一次中獎(jiǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,是的中點(diǎn),,,若,,
①四邊形是平行四邊形;
②是等腰三角形;
③四邊形的周長(zhǎng)是;
④四邊形的面積是16.
則以上結(jié)論正確的是
A. ①②③B. ①②④C. ①③④D. ②④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com