(2012•安徽)如圖,P是矩形ABCD內(nèi)的任意一點(diǎn),連接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,設(shè)它們的面積分別是S1、S2、S3、S4,給出如下結(jié)論:
①S1+S2=S3+S4;②S2+S4=S1+S3;③若S3=2S1,則S4=2S2;④若S1=S2,則P點(diǎn)在矩形的對(duì)角線上.
其中正確的結(jié)論的序號(hào)是
②和④
②和④
(把所有正確結(jié)論的序號(hào)都填在橫線上).
分析:根據(jù)三角形面積求法以及矩形性質(zhì)得出S1+S3=
1
2
矩形ABCD面積,以及
PF
PE
=
AB
AD
,
PF
CD
=
PE
BC
,即可得出P點(diǎn)一定在AC上.
解答:解:如右圖,過(guò)點(diǎn)P分別作PF⊥AD于點(diǎn)F,PE⊥AB于點(diǎn)E,
∵△APD以AD為底邊,△PBC以BC為底邊,
∴此時(shí)兩三角形的高的和為AB,即可得出S1+S3=
1
2
矩形ABCD面積;
同理可得出S2+S4=
1
2
矩形ABCD面積;
∴②S2+S4=S1+S3正確;
當(dāng)點(diǎn)P在矩形的兩條對(duì)角線的交點(diǎn)時(shí),S1+S2=S3+S4.但P是矩形ABCD內(nèi)的任意一點(diǎn),所以該等式不一定成立.故①不一定正確;
③若S3=2S1,只能得出△APD與△PBC高度之比,S4不一定等于2S2;故此選項(xiàng)錯(cuò)誤;
④若S1=S2,
1
2
×PF×AD=
1
2
PE×AB,
∴△APD與△PBA高度之比為:
PF
PE
=
AB
AD
,
∵∠DAE=∠PEA=∠PFA=90°,
∴四邊形AEPF是矩形,
∴此時(shí)矩形AEPF與矩形ABCD位似,
PF
CD
=
PE
BC

∴P點(diǎn)在矩形的對(duì)角線上.
故④選項(xiàng)正確,
故答案為:②和④.
點(diǎn)評(píng):此題主要考查了矩形的性質(zhì)以及三角形面積求法,根據(jù)已知得出
PF
CD
=
PE
BC
是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽)如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x-6)2+h.已知球網(wǎng)與O點(diǎn)的水平距離為9m,高度為2.43m,球場(chǎng)的邊界距O點(diǎn)的水平距離為18m.
(1)當(dāng)h=2.6時(shí),求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當(dāng)h=2.6時(shí),球能否越過(guò)球網(wǎng)?球會(huì)不會(huì)出界?請(qǐng)說(shuō)明理由;
(3)若球一定能越過(guò)球網(wǎng),又不出邊界,求h的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽)如圖,A點(diǎn)在半徑為2的⊙O上,過(guò)線段OA上的一點(diǎn)P作直線l,與⊙O過(guò)A點(diǎn)的切線交于點(diǎn)B,且∠APB=60°,設(shè)OP=x,則△PAB的面積y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽)如圖,點(diǎn)A、B、C、D在⊙O上,O點(diǎn)在∠D的內(nèi)部,四邊形OABC為平行四邊形,則∠OAD+∠OCD=
60
60
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽)如圖1,在△ABC中,D、E、F分別為三邊的中點(diǎn),G點(diǎn)在邊AB上,△BDG與四邊形ACDG的周長(zhǎng)相等,設(shè)BC=a、AC=b、AB=c.
(1)求線段BG的長(zhǎng);
(2)求證:DG平分∠EDF;
(3)連接CG,如圖2,若△BDG與△DFG相似,求證:BG⊥CG.

查看答案和解析>>

同步練習(xí)冊(cè)答案