【題目】如圖,為加快網(wǎng)絡(luò)建設(shè),某移動通信公司在一個坡度為2∶1的山腰上建了一座垂直于水平面的信號通信塔,在距山腳處水平距離39米的點(diǎn)處測得通信塔底處的仰角是25°,通信塔頂處的仰角是42°.請求出通信塔的大約高度(結(jié)果保留整數(shù),參考數(shù)據(jù):,,,).
【答案】通信塔AB的大約高度為21米.
【解析】
延長AB交DC延長線于點(diǎn)E,根據(jù)坡度的概念設(shè)CE=x,得到BE=2x,根據(jù)正切的概念列式求出x,得到DE的長,根據(jù)正切的定義求出AE,計(jì)算即可.
延長AB交DC延長線于點(diǎn)E,則AE⊥DC.
由題意知∠BDC=25°、∠ADE=42°、CD=39米,
∵BC的坡度為2:1
∴設(shè)CE=x、則BE=2x、DE=39+x,
在Rt△BDE中,由tan∠BDE=可得≈0.5,
解得:x=13,
∴DE=39+x=52、BE=2x=26,
在Rt△ADE中,AE=DE·tan∠ADE≈52×0.9=46.8,
則AB=AE﹣BE=46.8﹣26=20.8≈21(米),
答:通信塔AB的大約高度為21米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:將函數(shù)l的圖象繞點(diǎn)P(m,0)旋轉(zhuǎn)180°,得到新的函數(shù)l'的圖象,我們稱函數(shù)l'是函數(shù)關(guān)于點(diǎn)P的相關(guān)函數(shù).
例如:當(dāng)m=1時,函數(shù)y=(x+1)2+5關(guān)于點(diǎn)P(1,0)的相關(guān)函數(shù)為y=﹣(x﹣3)2﹣5.
(1)當(dāng)m=0時
①一次函數(shù)y=x﹣1關(guān)于點(diǎn)P的相關(guān)函數(shù)為 ;
②點(diǎn)(,﹣)在二次函數(shù)y=﹣ax2﹣ax+1(a≠0)關(guān)于點(diǎn)P的相關(guān)函數(shù)的圖象上,求a的值.
(2)函數(shù)y=(x﹣1)2+2關(guān)于點(diǎn)P的相關(guān)函數(shù)y=﹣(x+3)2﹣2,則m= ;
(3)當(dāng)m﹣1≤x≤m+2時,函數(shù)y=x2﹣mx﹣m2關(guān)于點(diǎn)P(m,0)的相關(guān)函數(shù)的最大值為6,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MAN=30°,在射線AN上取一點(diǎn)B,使AB=4 cm,過點(diǎn)B作BC⊥AM于點(diǎn)C,點(diǎn)D為邊AB上的動點(diǎn)(點(diǎn)D不與點(diǎn)A,點(diǎn)B重合),連接CD,過點(diǎn)D作ED⊥CD交直線AC于點(diǎn)E.在點(diǎn)D由點(diǎn)A到點(diǎn)B運(yùn)動過程中,設(shè)AD=x cm,AE=y cm.
(1)取指定點(diǎn)作圖,根據(jù)下面表格預(yù)填結(jié)果,先通過作圖確定AD=2 cm時,點(diǎn)E的位置,測量AE的長度.
①根據(jù)題意,在答題卡上補(bǔ)全圖形;
②把表格補(bǔ)充完整:通過取點(diǎn)、畫圖、測量,得到了x與y的幾組對應(yīng)值,如表:
x/cm | … | 1 | 2 | 3 | … | ||||
y cm | … | 0.4 | 0.8 | 1.0 | m | 1.0 | 0 | 4.0 | … |
則m=______(結(jié)果保留一位小數(shù)).
(2)在下面的平面直角坐標(biāo)系xOy中,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AE=AD時,AD的長度約為______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖顯示了用計(jì)算機(jī)模擬隨機(jī)拋擲一枚硬幣的某次實(shí)驗(yàn)的結(jié)果
下面有三個推斷:
①當(dāng)拋擲次數(shù)是100時,計(jì)算機(jī)記錄“正面向上”的次數(shù)是47,所以“正面向上”的概率是0.47;
②隨著試驗(yàn)次數(shù)的增加,“正面向上”的頻率總在0.5附近擺動,顯示出一定的穩(wěn)定性,可以估計(jì)“正面向上”的概率是0.5;
③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)拋擲次數(shù)為150時,“正面向上”的頻率一定是0.45.
其中合理的是( )
A.①B.②C.①②D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:連結(jié)菱形的一邊中點(diǎn)與對邊的兩端點(diǎn)的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.
(1)判斷下列命題是真命題,還是假命題?
①正方形是自相似菱形;
②有一個內(nèi)角為60°的菱形是自相似菱形.
③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點(diǎn),則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED.
(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,E為BC中點(diǎn).
①求AE,DE的長;
②AC,BD交于點(diǎn)O,求tan∠DBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)的一處圓柱形的輸水管道破裂,維修人員為更換管道,需要確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.
(1)請你補(bǔ)全這個輸水管道的圓形截面圖;(要求尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)若這個輸水管道有水部分的水面寬AB=32㎝,水最深處的地方高度為8㎝,求這個圓形截面的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛轎車在經(jīng)過某路口的感應(yīng)線B和C處時,懸臂燈桿上的電子警察拍攝到兩張照片,兩感應(yīng)線之間距離BC為6.2m,在感應(yīng)線B、C兩處測得電子警察A的仰角分別為∠ABD=45°,∠ACD=28°.求電子警察安裝在懸臂燈桿上的高度AD的長.(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin28°=0.47,cos28°=0.88,tan28°=0.53)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從共享單車,共享汽車等共享出行到共享充電寶,共享雨傘等共享物品,各式各樣的共享經(jīng)濟(jì)模式在各個領(lǐng)域迅速普及應(yīng)用,越來越多的企業(yè)與個人成為參與者與受益者.小宇和小強(qiáng)分別對共享經(jīng)濟(jì)中的“共享出行”和“共享知識”最感興趣,他們上網(wǎng)查閱了相關(guān)資料,順便收集到四個共享經(jīng)濟(jì)領(lǐng)域的圖標(biāo),并將其制成編號為,,,的四張卡片(除編號和內(nèi)容外,其余完全相同)他們將這四張卡片背面朝上,洗勻放好,從中隨機(jī)抽取一張(不放回),再從中隨機(jī)抽取一張,請用列表或畫樹狀圖的方法求抽到的兩張卡片恰好是“共享出行”和“共享知識”的概率(這四張卡片分別用它們的編號,,,表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=3,OC=4,分別以OA、OC所在直線為x軸、y軸,建立平面直角坐標(biāo)系,D是邊CB上的一個動點(diǎn)(不與C、B重合),反比例函數(shù)y=(k>0)的圖象經(jīng)過點(diǎn)D且與邊BA交于點(diǎn)E,作直線DE.
(1)當(dāng)點(diǎn)D運(yùn)動到BC中點(diǎn)時,求k的值;
(2)求的值;
(3)連接DA,當(dāng)△DAE的面積為時,求k值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com