【題目】如圖,拋物線軸交于,兩點.

1)求該拋物線的解析式;

2)拋物線的對稱軸上是否存在一點,使的周長最小?若存在,請求出點的坐標,若不存在,請說明理由.

3)設拋物線上有一個動點,當點在該拋物線上滑動到什么位置時,滿足,并求出此時點的坐標.

【答案】(1)y=x2﹣2x﹣3;(2)存在;M(1,﹣2);(3)(1+2,4)或(1﹣2 ,4)或(1,﹣4).

【解析】

(1)由于拋物線y=x2+bx+cx軸交于A(-1,0),B(3,0)兩點,那么可以得到方程x2+bx+c=0的兩根為x=-1x=3,然后利用根與系數(shù)即可確定b、c的值;

(2)點B是點A關(guān)于拋物線對稱軸的對稱點,在拋物線的對稱軸上有一點M,要使MA+MC的值最小,則點M就是BC與拋物線對稱軸的交點,利用待定系數(shù)法求出直線BC的解析式,把拋物線對稱軸x=1代入即可得到點M的坐標;

(3)根據(jù)SPAB=8,求得P的縱坐標,把縱坐標代入拋物線的解析式即可求得P點的坐標.

(1)∵拋物線y=x2+bx+cx軸交于A(﹣1,0),B(3,0)兩點,

∴方程x2+bx+c=0的兩根為x=﹣1x=3,

﹣1+3=﹣b,

﹣1×3=c,

b=﹣2,c=﹣3,

∴二次函數(shù)解析式是y=x2﹣2x﹣3.

(2)∵點A、B關(guān)于對稱軸對稱,

∴點MBC與對稱軸的交點時,MA+MC的值最小,

設直線BC的解析式為y=kx+t(k≠0),

,解得:

∴直線AC的解析式為y=x﹣3,

∵拋物線的對稱軸為直線x=1,

∴當x=1時,y=﹣2,

∴拋物線對稱軸上存在點M(1,﹣2)符合題意;

(3)P的縱坐標為|yP|,

SPAB=8,

AB|yP|=8,

AB=3+1=4,

|yP|=4,

yP=±4,

yP=4代入解析式得,4=x2﹣2x﹣3,

解得,x=1±2,

yP=﹣4代入解析式得,﹣4=x2﹣2x﹣3,

解得,x=1,

∴點P在該拋物線上滑動到(1+2,4)或(1﹣2,4)或(1,﹣4)時,滿足SPAB=8.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀某同學對多項式進行因式分解的過程,并解決問題:

解:設,

原式(第一步)

(第二步)

(第三步)

(第四步)

1)該同學第二步到第三步的變形運用了________(填序號);

A.提公因式法 B.平方差公式

C.兩數(shù)和的平方公式 D.兩數(shù)差的平方公式

2)該同學在第三步用所設的的代數(shù)式進行了代換,得到第四步的結(jié)果,這個結(jié)果能否進一步因式分解?________(填不能.如果能,直接寫出最后結(jié)果________.

3)請你模仿以上方法嘗試對多項式進行因式分行解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,△ABC的頂點坐標如圖所示,

1)請你在圖中先作出△ABC關(guān)于直線m(直線m上點的橫坐標均為﹣1)對稱圖形△A1B1C1,再作出△A1B1C1關(guān)于直線n(直線n上點的縱坐標均為2)對稱圖形△A2B2C2;

2)線段BC上有一點Ma,b),點M關(guān)于直線m的對稱點為N,點N關(guān)于直線的n的對稱點為E,求NE的坐標(用含a,b的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABAC,需說明ADC≌△AEB,可供添加的條件如下:①∠B=∠C,②ADAE,③∠ADC=∠AEB,④DCBE,選擇其中一個能使ADC≌△AEB,則成立的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,ABAC,點DBC上一點,且DADB,此時ACD也恰好為等腰三角形,則∠BAC_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,任意畫一個∠BAC60°的△ABC,再分別作△ABC的兩條角平分線BECD,BECD相交于點P,連接AP,有以下結(jié)論:①∠BPC120°;②AP平分∠BAC;③ADAE;④PDPE;⑤BD+CEBC;其中正確的結(jié)論為_____.(填寫序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等腰三角形ABC中,∠ABC90度,DAC邊上的動點,連結(jié)BD,E、F分別是AB、BC上的點,且DEDF.、(1)如圖1,若DAC邊上的中點.

1)填空:∠C   ,∠DBC   ;

2)求證:BDE≌△CDF

3)如圖2,D從點C出發(fā),點EPD上,以每秒1個單位的速度向終點A運動,過點BBPAC,且PBAC4,點EPD上,設點D運動的時間為t秒(0≤1≤4)在點D運動的過程中,圖中能否出現(xiàn)全等三角形?若能,請直接寫出t的值以及所對應的全等三角形的對數(shù),若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B為定點,定直線l//ABPl上一動點.點M,N分別為PA,PB的中點,對于下列各值:

線段MN的長;

②△PAB的周長;

③△PMN的面積;

直線MN,AB之間的距離;

⑤∠APB的大。

其中會隨點P的移動而變化的是( )

A. ②③ B. ②⑤ C. ①③④ D. ④⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,以AC為直徑作⊙OBC于點D,過點D作⊙O的切線交AB于點E,交AC的延長線于點F

1)求證:DEAB;

2tanBDE=, CF=3,求DF的長.

查看答案和解析>>

同步練習冊答案