已知正方形ABCD中,BD是對(duì)角線,BE平分∠DBC交DC于E,若CE=1,則AB長(zhǎng)為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
A
分析:正方形的各邊相等,因而求AB可以轉(zhuǎn)化為求CD,根據(jù)三角形的角平分線的性質(zhì)定理,就可以求解.
解答:解:過(guò)點(diǎn)E作EF⊥BD于F,
,∵四邊形ABCD是正方形,
∴∠CDF=45°,∠C=90°,
∴△BCD是等腰直角三角形,
∵BE平分∠DBC交DC于E,CE=1,
∴EF=CE=1,
∴EF=DF=1,
∴DE==,
∴CD=DE+CE=+1,
即AB=+1.
故選A.
點(diǎn)評(píng):正方形邊長(zhǎng)與對(duì)角線的比值是定值,不隨著邊長(zhǎng)的變化而變化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD中,對(duì)角線BD長(zhǎng)為8,則正方形的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD中,邊長(zhǎng)為10厘米,點(diǎn)E在AB邊上,BE=6厘米.
(1)如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CD上由C點(diǎn)向D點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPE與△CQP是否全等,請(qǐng)說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPE與△CQP全等?
(2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿正方形ABCD四邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間點(diǎn)P與點(diǎn)Q第一次在正方形ABCD邊上的何處相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•長(zhǎng)沙)如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點(diǎn)E,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△DCF的位置,并延長(zhǎng)BE交DF于點(diǎn)G.
(1)求證:△BDG∽△DEG;
(2)若EG•BG=4,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知正方形ABCD中,BD是對(duì)角線,BE平分∠DBC交DC于E點(diǎn),若CE=1,則AB=
2
+1
2
+1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知正方形ABCD中的△DCF可以經(jīng)過(guò)旋轉(zhuǎn)得到△ECB.
(1)圖中哪個(gè)點(diǎn)是旋轉(zhuǎn)中心?
(2)按什么方向旋轉(zhuǎn)?旋轉(zhuǎn)角是多少度?
(3)若∠ECB=30°,求∠FCB的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案