如下圖,網(wǎng)格中都是邊長為1的小正方形,點(diǎn)A、B在格點(diǎn)上,請?jiān)凇洞痤}卡》上所提供的網(wǎng)格區(qū)域內(nèi),充分利用格線或格點(diǎn),完成如下操作:
(1)以MN為對稱軸,作AB的對稱線段CD;
(2)作線段AE,要求:①AE⊥AB;②AE=AB,并用構(gòu)造全等直角三角形的方法,說明所作的線段AE符合要求。
解:(1)對頂點(diǎn)A、B作關(guān)于直線MN的對稱點(diǎn)C、D,連接CD,CD即為所求;
(2)以AB為對角線做矩形AFBF',繞A點(diǎn)向下旋轉(zhuǎn)90°得矩形AGEG',
∵AG'=BF'G'E=AF'∠AG'E=∠AF'B=90°
∴△AF'B≌△AG'E
∴AB=AE∠EAG'=BAF'
∵∠EAG'+∠AEG'=90°
∴∠EAG'+BAF'=90°
即:AB⊥EA
(以下提供了兩種構(gòu)圖,都可用于證明AE=AB和AE⊥AB)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)“構(gòu)造法”是一種重要方法,它沒有固定的模式.要想用好它,需要有敏銳的觀察、豐富的想象、靈活的構(gòu)思.應(yīng)用構(gòu)造法解題的關(guān)鍵有二:一是要有明確的方向,即為什么目的而構(gòu)造;二是要弄清條件的本質(zhì)特點(diǎn),以便重新進(jìn)行組合.
例:在△ABC中,AB、BC、AC三邊長分別是
5
、
10
、
13
,求這個三角形的面積.
小輝在解這道題時,畫一個正方形網(wǎng)格(每個正方形的邊長為1),再在網(wǎng)格中畫出格點(diǎn)(即的頂點(diǎn)都在小正方形的頂點(diǎn)處),如圖1所示,這樣不需要求的高,借助網(wǎng)格就能計(jì)算出它的面積.圖中的面積,可以看成是一個的正方形的面積減去三個小三角形的面積:S△ABC=3×3-
1
2
×3×1-
1
2
×2×1-
1
2
×3×2=
7
2

思維拓展:已知△ABC的邊長分別為
5a
、2
2a
、
17a
(a>0)
,請?jiān)谙聢D所示的正方形網(wǎng)格中(每個小正方形的邊長為a)畫出相應(yīng)的△ABC,并求出它的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市高級中等學(xué)校招生考試數(shù)學(xué) 題型:013

下圖,在10×10的網(wǎng)格中,每個小方格都是邊長為1的小正方形,每個小正方形的頂點(diǎn)稱為格點(diǎn).若拋物線經(jīng)過圖中的三個格點(diǎn),則以這三個格點(diǎn)為頂點(diǎn)的三角形稱為拋物線的“內(nèi)接格點(diǎn)三角形”.以O(shè)為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個交點(diǎn)之間的距離為,且這兩個交點(diǎn)與拋物線的頂點(diǎn)是拋物線的內(nèi)接格點(diǎn)三角形的三個頂點(diǎn),則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是

[  ]

A.16

B.15

C.14

D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年北京市石景山區(qū)初三數(shù)學(xué)一模試卷及答案 題型:022

如下圖,在由12個邊長都為1且有一個銳角為60°的小菱形組成的網(wǎng)格中,點(diǎn)P是其中的一個頂點(diǎn),以點(diǎn)P為直角頂點(diǎn)作格點(diǎn)直角三角形(即頂點(diǎn)均在格點(diǎn)上的三角形),請你寫出所有可能的直角三角形斜邊的長________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年北京市石景山區(qū)初三一模數(shù)學(xué)試卷 題型:022

如下圖,在由12個邊長都為1且有一個銳角為60°的小菱形組成的網(wǎng)格中,點(diǎn)P是其中的一個頂點(diǎn),以點(diǎn)P為直角頂點(diǎn)作格點(diǎn)直角三角形(即頂點(diǎn)均在格點(diǎn)上的三角形),請你寫出所有可能的直角三角形斜邊的長________

查看答案和解析>>

同步練習(xí)冊答案