【題目】如圖,已知ABCD的對(duì)角線AC,BD交于點(diǎn)O,DE平分∠ADC交BC于點(diǎn)E,交AC與點(diǎn)F,且∠BCD=60°,BC=2CD,連接OE,則下列結(jié)論:①OE∥AB ②SABCD=BD·CD ③AO=2BO ④S△DOF=2S△EOF,其中成立的有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
【答案】C
【解析】
①先根據(jù)題意說明BE=CE、OA=OC,然后根據(jù)三角形中位線定理即可判斷;
②只要說明BD⊥CD即可判定為正確;
③設(shè)AB=x,分別表示OA和OB的長,然后進(jìn)行比較即可判斷;
④利用平行線分線段成比例定理可得DF=2EF,然后根據(jù)三角形的面積公式即可判定.
解:①∵四邊形ABCD是平行四邊形
∴AD//BC,OA=OC,∠ADC+∠BCD=180°
∵∠BCD=60°,
∴ADC= 120°,
∵DE平分∠ADC,
∴∠CDE=∠BCD=60°
∴△CDE等邊三角形
∴CE=CD
∵BC=2CD
∴BE=CE
∵OA=OC
.∴OE//AB
故①正確;
②∵△DEC是等邊三角形,
∴∠DEC=60°=∠DBC+∠BDE
∵BE=EC=DE
∴∠DBC=∠BDE=30°,
∴∠BDC=30°+60°=90°
∴BD⊥CD
∴S平行四邊形ABCD=2=2×BD·CD= BD·CD;
故②正確;
③設(shè)AB=x,則AD=2x,BD=x,
∴OB=x
則由勾股定理可得:
故③不正確;
④∵AD//EC,
∴
∴DF=2EF
∵S△DOF和S△EOF的高相同
∴S△DOF=2S△EOF
故④正確;即共有3個(gè)正確.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)D是AB下方圓上的一點(diǎn),點(diǎn)C是優(yōu)弧AD的中點(diǎn),過點(diǎn)B作⊙O的切線BE交AC的延長線于點(diǎn)E,連接OC,OD,CB,BD.
(1)求證:BD∥OC;
(2)當(dāng)AB=6時(shí),完成填空:
①當(dāng)BE= 時(shí),四邊形ODBC是菱形;
②當(dāng)BE= 時(shí),S△BCE=S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著中國傳統(tǒng)節(jié)日“端午節(jié)”的臨近,東方紅商場決定開展“歡度端午,回饋顧客”的讓利促銷活動(dòng),對(duì)部分品牌粽子進(jìn)行打折銷售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,買6盒甲品牌粽子和3盒乙品牌粽子需660元;打折后,買50盒甲品牌粽子和40盒乙品牌粽子需要5200元.
(1)打折前甲、乙兩種品牌粽子每盒分別為多少元?
(2)陽光敬老院需購買甲品牌粽子80盒,乙品牌粽子100盒,問打折后購買這批粽子比不打折節(jié)省了多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在百貨商場購進(jìn)了A、B兩種品牌的籃球,購買A品牌藍(lán)球花費(fèi)了2400元,購買B品牌藍(lán)球花費(fèi)了1950元,且購買A品牌藍(lán)球數(shù)量是購買B品牌藍(lán)球數(shù)量的2倍,已知購買一個(gè)B品牌藍(lán)球比購買一個(gè)A品牌藍(lán)球多花50元.
(1)求購買一個(gè)A品牌、一個(gè)B品牌的藍(lán)球各需多少元?
(2)該學(xué)校決定再次購進(jìn)A、B兩種品牌藍(lán)球共30個(gè),恰逢百貨商場對(duì)兩種品牌藍(lán)球的售價(jià)進(jìn)行調(diào)整,A品牌藍(lán)球售價(jià)比第一次購買時(shí)提高了10%,B品牌藍(lán)球按第一次購買時(shí)售價(jià)的9折出售,如果這所中學(xué)此次購買A、B兩種品牌藍(lán)球的總費(fèi)用不超過3200元,那么該學(xué)校此次最多可購買多少個(gè)B品牌藍(lán)球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,②,在矩形ABCD中,AB=4,BC=8,P,Q分別是邊BC,CD上的點(diǎn).
(1)如圖①,若AP⊥PQ,BP=2,求CQ的長;
(2)如圖②,若=2,且E,F,G分別為AP,PQ,PC的中點(diǎn),求四邊形EPGF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與x軸交于點(diǎn)A(1, 0),B(-7, 0),頂點(diǎn)D坐標(biāo)為(-3,),點(diǎn)C在y軸的正半軸上,CD交x軸于點(diǎn)F,△CAD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到△CFE,點(diǎn)A恰好旋轉(zhuǎn)到點(diǎn)F,連接BE.過頂點(diǎn)D作DD1⊥x軸于點(diǎn)D1
(1)求拋物線的表達(dá)式
(2)求證:四邊形BFCE是平行四邊形.
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),當(dāng)P在B點(diǎn)左側(cè)時(shí),過點(diǎn)P作PM⊥x軸,點(diǎn)M為垂足,請(qǐng)問是否存在P點(diǎn)使得△PAM與△DD1A相似,如果存在,請(qǐng)寫出點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃經(jīng)銷一些特產(chǎn),經(jīng)銷前,圍繞“A:王高虎頭雞,B:羊口咸蟹子,C:桂河芹菜,D:巨淀湖咸鴨蛋”四種特產(chǎn),在全市范圍內(nèi)隨機(jī)抽取了部分市民進(jìn)行問卷調(diào)查:“我最喜歡的特產(chǎn)是什么?”(必選且只選一種).現(xiàn)將調(diào)查結(jié)果整理后,繪制成如圖所示的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖.
(1)請(qǐng)補(bǔ)全扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖;
(2)若全市有110萬市民,估計(jì)全市最喜歡“羊口咸蟹子”的市民約有多少萬人?
(3)在一個(gè)不透明的口袋中有四個(gè)分別寫上四種特產(chǎn)標(biāo)記A、B、C、D的小球(除標(biāo)記外完全相同),隨機(jī)摸出一個(gè)小球然后放回,混合搖勻后,再隨機(jī)摸出一個(gè)小球,則兩次都摸到A的概率是多少?寫出分析計(jì)算過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,半徑OA丄OB,點(diǎn)D在OA或OA的延長線上(不與點(diǎn)O,A重合),直線BD交⊙O于點(diǎn)C,過C作⊙O的切線交直線OA于點(diǎn)P.
(1)如圖(1),點(diǎn)D在線段OA上,若∠OBC=15°, 求∠OPC的大小;
(2)如圖(2),點(diǎn)D在OA的延長線上,若∠OBC=65°,求∠OPC的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,與的AC邊相切于點(diǎn)C,與AB、BC邊分別交于點(diǎn)D、E,,CE是的直徑.
(1)求證:AB是的切線;
(2)若求AC的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com