【題目】如圖,有8×8的正方形網(wǎng)格,每個(gè)小正方形邊長(zhǎng)為1,按要求操作并計(jì)算。

1)在8×8的正方形網(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為;

2)將點(diǎn)向下平移5個(gè)單位,再關(guān)于軸對(duì)稱得到點(diǎn),則點(diǎn)坐標(biāo)為(_______,_________);

3)畫(huà)出三角形,并求其面積。

【答案】1)圖見(jiàn)詳解;

2)(-2,-1);

3

【解析】

1)根據(jù)A點(diǎn)坐標(biāo)確定坐標(biāo)原點(diǎn)的位置,然后再畫(huà)出平面直角坐標(biāo)系即可;
2)根據(jù)A點(diǎn)坐標(biāo)寫(xiě)出平移后的坐標(biāo),然后再根據(jù)關(guān)于y軸對(duì)稱點(diǎn)的坐標(biāo)特點(diǎn):橫坐標(biāo)互為相反數(shù),縱坐標(biāo)不變可得C點(diǎn)坐標(biāo);
3)利用矩形面積減去周圍多余三角形的面積即可.

解:(1)如圖所示:

2)如圖所示:點(diǎn)A向下平移5個(gè)單位得到點(diǎn)(2-1),
關(guān)于y軸對(duì)稱的點(diǎn)C-2,-1);

3)如圖所示:

的面積等于矩形面積減去周圍多余三角形的面

即是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D、E、F分別是垂足,且AB=10cm,BC=8cm,CA=6cm,則點(diǎn)O到邊AB的距離為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,四邊形中,,,,且,

試求:(1的度數(shù);(2)四邊形的面積(結(jié)果保留根號(hào));

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知⊙O的直徑AB=2,弦AC與弦BD交于點(diǎn)E.且ODAC,垂足為點(diǎn)F.

(1)如圖1,如果AC=BD,求弦AC的長(zhǎng);

(2)如圖2,如果E為弦BD的中點(diǎn),求∠ABD的余切值;

(3)聯(lián)結(jié)BC、CD、DA,如果BC是⊙O的內(nèi)接正n邊形的一邊,CD是⊙O的內(nèi)接正(n+4)邊形的一邊,求ACD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,都是等腰直角三角形,,反比例函數(shù)在第一象限的圖象經(jīng)過(guò)點(diǎn)B,若,則的值為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一枚棋子放在七角棋盤的第0號(hào)角,現(xiàn)依逆時(shí)針?lè)较蛞苿?dòng)這枚棋子,其各步依次移動(dòng)1,2,3,…,n個(gè)角,如第一步從0號(hào)角移動(dòng)到第1號(hào)角,第二步從第1號(hào)角移動(dòng)到第3號(hào)角,第三步從第3號(hào)角移動(dòng)到第6號(hào)角,….若這枚棋子不停地移動(dòng)下去,則這枚棋子永遠(yuǎn)不能到達(dá)的角的個(gè)數(shù)是( )

A.0 B.1 C.2 D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是2,點(diǎn)ECD邊的中點(diǎn),點(diǎn)F是邊BC上不與點(diǎn)B,C重合的一個(gè)動(dòng)點(diǎn),把∠C沿直線EF折疊,使點(diǎn)C落在點(diǎn)C′處.當(dāng)△ADC′為等腰三角形時(shí),FC的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)點(diǎn)A(0,4)、B(3,8).若點(diǎn)P(x,0),使得∠APB最大,則x=(  )

A. 3 B. 0 C. 4 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,AB=AC,AEBC邊上的高線,BM平分∠ABCAE于點(diǎn)M,經(jīng)過(guò)B,M 兩點(diǎn)的⊙OBC于點(diǎn)G,交AB于點(diǎn)F ,F(xiàn)B⊙O的直徑.

(1)求證:AM⊙O的切線

(2)當(dāng)BE=3,cosC=時(shí),求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案