【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過(guò)A(-3,0),B(0,-3),C(1,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S
關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
(3)若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線y=-x上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫(xiě)出相應(yīng)的點(diǎn)Q的坐標(biāo).
【答案】(1)
時(shí),S最大為
(3)(-3,3)或或或(3,-3)
【解析】試題分析:(1)先假設(shè)出函數(shù)解析式,利用三點(diǎn)法求解函數(shù)解析式.
(2)設(shè)出M點(diǎn)的坐標(biāo),利用S=S△AOM+S△OBM﹣S△AOB即可進(jìn)行解答;
(3)當(dāng)OB是平行四邊形的邊時(shí),表示出PQ的長(zhǎng),再根據(jù)平行四邊形的對(duì)邊相等列出方程求解即可;當(dāng)OB是對(duì)角線時(shí),由圖可知點(diǎn)A與P應(yīng)該重合,即可得出結(jié)論.
試題解析:解:(1)設(shè)此拋物線的函數(shù)解析式為:y=ax2+bx+c(a≠0),
將A(-3,0),B(0,-3),C(1,0)三點(diǎn)代入函數(shù)解析式得:
解得,所以此函數(shù)解析式為:.
(2)∵M點(diǎn)的橫坐標(biāo)為m,且點(diǎn)M在這條拋物線上,∴M點(diǎn)的坐標(biāo)為:(m,),
∴S=S△AOM+S△OBM-S△AOB=×3×(-)+×3×(-m)-×3×3=-(m+)2+,
當(dāng)m=-時(shí),S有最大值為:S=-.
(3)設(shè)P(x,).分兩種情況討論:
①當(dāng)OB為邊時(shí),根據(jù)平行四邊形的性質(zhì)知PB∥OQ,
∴Q的橫坐標(biāo)的絕對(duì)值等于P的橫坐標(biāo)的絕對(duì)值,
又∵直線的解析式為y=-x,則Q(x,-x).
由PQ=OB,得:|-x-()|=3
解得: x=0(不合題意,舍去),-3, ,∴Q的坐標(biāo)為(-3,3)或或;
②當(dāng)BO為對(duì)角線時(shí),如圖,知A與P應(yīng)該重合,OP=3.四邊形PBQO為平行四邊形則BQ=OP=3,Q橫坐標(biāo)為3,代入y=﹣x得出Q為(3,﹣3).
綜上所述:Q的坐標(biāo)為:(-3,3)或或或(3,-3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的兩個(gè)外角平分線交于點(diǎn)P,則下列結(jié)論正確的是( 。
①PA=PC ②BP平分∠ABC ③P到AB,BC的距離相等 ④BP平分∠APC.
A. ①② B. ①④ C. ②③ D. ③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】電子跳蚤游戲盤(pán)是如圖所示的△ABC,AB=AC=BC=5.如果跳蚤開(kāi)始時(shí)在BC邊的P0處,BP0=2.跳蚤第一步從P0跳到AC邊的P1(第1次落點(diǎn))處,且CP1= CP0;第二步從P1跳到AB邊的P2(第2次落點(diǎn))處,且AP2= AP1;第三步從P2跳到BC邊的P3(第3次落點(diǎn))處,且BP3= BP2;…;跳蚤按照上述規(guī)則一直跳下去,第n次落點(diǎn)為Pn(n為正整數(shù)),則點(diǎn)P2016與點(diǎn)P2017之間的距離為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“愛(ài)我永州”中學(xué)生演講比賽中,五位評(píng)委分別給甲、乙兩位選手的評(píng)分如下:
甲:8、7、9、8、8
乙:7、9、6、9、9
則下列說(shuō)法中錯(cuò)誤的是( )
A.甲、乙得分的平均數(shù)都是8
B.甲得分的眾數(shù)是8,乙得分的眾數(shù)是9
C.甲得分的中位數(shù)是9,乙得分的中位數(shù)是6
D.甲得分的方差比乙得分的方差小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)的某種產(chǎn)品每件成本為40元,經(jīng)市場(chǎng)調(diào)查整理出如下信息:
①該產(chǎn)品90天售量(n件)與時(shí)間(第x天)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
時(shí)間(第x天) | 1 | 2 | 3 | 10 | … |
日銷售量(n件) | 198 | 196 | 194 | ? | … |
②該產(chǎn)品90天內(nèi)每天的銷售價(jià)格與時(shí)間(第x天)的關(guān)系如下表:
時(shí)間(第x天) | 1≤x<50 | 50≤x≤90 |
銷售價(jià)格(元/件) | x+60 | 100 |
(1)求出第10天日銷售量;
(2)設(shè)銷售該產(chǎn)品每天利潤(rùn)為y元,請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)表達(dá)式,并求出在90天內(nèi)該產(chǎn)品的銷售利潤(rùn)最大?最大利潤(rùn)是多少?(提示:每天銷售利潤(rùn)=日銷售量×(每件銷售價(jià)格-每件成本))
(3)在該產(chǎn)品銷售的過(guò)程中,共有多少天銷售利潤(rùn)不低于5400元,請(qǐng)直接寫(xiě)出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°, BC∥x軸,拋物線y=ax2-2ax+3經(jīng)過(guò)△ABC的三個(gè)頂點(diǎn),并且與x軸交于點(diǎn)D、E,點(diǎn)A為拋物線的頂點(diǎn).
(1)求拋物線的解析式;
(2)連接CD,在拋物線的對(duì)稱軸上是否存在一點(diǎn)P使△PCD為直角三角形,若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰△ABC中,AB=AC,∠BAC的平分線與AB的中垂線交于點(diǎn)O,點(diǎn)C沿EF折疊后與點(diǎn)O重合.若∠CEF=50°,則∠AOF的度數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線y=﹣2x+b與反比例函數(shù)y=交于點(diǎn)A、B,與x軸交于點(diǎn)C.
(1)若A(﹣3,m)、B(1,n).直接寫(xiě)出不等式﹣2x+b>的解.
(2)求sin∠OCB的值.
(3)若CB﹣CA=5,求直線AB的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某景區(qū)的兩個(gè)景點(diǎn)A、B處于同一水平地面上、一架無(wú)人機(jī)在空中沿MN方向水平飛行進(jìn)行航拍作業(yè),MN與AB在同一鉛直平面內(nèi),當(dāng)無(wú)人機(jī)飛行至C處時(shí)、測(cè)得景點(diǎn)A的俯角為45°,景點(diǎn)B的俯角為30°,此時(shí)C到地面的距離CD為100米,則兩景點(diǎn)A、B間的距離為__米(結(jié)果保留根號(hào)).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com