科目: 來源: 題型:
如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且.
(1)求這兩個函數(shù)的解析式;
(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.并根據(jù)圖像寫出;
(3)方程的解;
(4)使一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍;
查看答案和解析>>
科目: 來源: 題型:
加工一種產(chǎn)品,需先將材料加熱達到60℃后,再停止加熱進行加工,設(shè)該材料溫度為y﹙℃﹚,從加熱開始計算的時間為x(分鐘).據(jù)了解,該材料在加熱時,溫度y是時間x的一次函數(shù),停止加熱進行加工時,溫度y與時間x成反比例關(guān)系(如圖所示),己知該材料在加熱前的溫度為l5℃,加熱5分鐘后溫度達到60℃.
(1)分別求出將材料加熱和加工時,y與x的函數(shù)關(guān)系式(不必寫出自變量的取值范圍);
(2)根據(jù)工藝要求,當(dāng)材料的溫度低于l5℃時,必須停止加工,那么加工時間是多少分鐘?
查看答案和解析>>
科目: 來源: 題型:
如圖,在平面直角坐標系中,點0為坐標原點,直線交x軸于點A,交y軸于點B,BD平分∠AB0,點C是x軸的正半軸上一點,連接BC,且AC=AB.
(1)求直線BD的解析式:
(2)過C作CH∥y軸交直線AB于點H,點P是射線CH上的一個動點,過點P作PE⊥CH,直線PE交直線BD于E、交直線BC于F,設(shè)線段EF的長為d(d≠0),點P的縱坐標為t,求d與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)在(2)的條件下,取線段AB的中點M,y軸上有一點N.試問:是否存在這樣的t的值,使四邊形PEMN是平行四邊形,若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發(fā),沿軸以每秒1個單位長的速度向上移動,且過點P的直線l:也隨之移動,設(shè)移動時間為t秒.
(1)當(dāng)t=3時,求l的解析式;
(2)若點M,N位于l的異側(cè),確定t的取值范圍;
(3)直接寫出t為何值時,點M關(guān)于l的對稱點落在坐標軸上.
查看答案和解析>>
科目: 來源: 題型:
某地為改善生態(tài)環(huán)境,積極開展植樹造林,甲、乙兩人從近幾年的統(tǒng)計數(shù)據(jù)中有如下發(fā)現(xiàn):
(1)求y2與x之間的函數(shù)關(guān)系式?
(2)若上述關(guān)系不變,試計算哪一年該地公益林面積可達防護林面積的2倍?這時該地公益林的面積為多少萬畝?
查看答案和解析>>
科目: 來源: 題型:
如圖,已知一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(1,-3),B(3,m)兩點,連接OA、OB.
(1)求兩個函數(shù)的解析式;(2)求△AOB的面積.
查看答案和解析>>
科目: 來源: 題型:
為預(yù)防甲型H1N1流感,某校對教室噴灑藥物進行消毒.已知噴灑藥物時每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比,藥物噴灑完后,y與x成反比例(如圖所示).現(xiàn)測得10分鐘噴灑完后,空氣中每立方米的含藥量為8毫克.
(1)求噴灑藥物時和噴灑完后,y關(guān)于x的函數(shù)關(guān)系式;
(2)若空氣中每立方米的含藥量低于2毫克學(xué)生方可進教室,問消毒開始后至少要經(jīng)過多少分鐘,學(xué)生才能回到教室?
(3)如果空氣中每立方米的含藥量不低于4毫克,且持續(xù)時間不低于10分鐘時,才能殺滅流感病毒,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目: 來源: 題型:
小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:
問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連結(jié)AE并延長交BC的延長線于點F.求證:S四邊形ABCD=S△ABF.(S表示面積)
問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.
實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66º,∠POB=30º,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66º≈0.91,tan66º≈2.25,≈1.73)
拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)、(6,3)、、(4,2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形的面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
在Rt△ABC中,∠ACB=90°,BC=30,AB=50,點P是AB邊上任意一點,直線PE⊥AB,與邊AC相交于E,此時Rt△AEP∽Rt△ABC,點M在線段AP上,點N在線段BP上,EM=EN,EP:EM=12:13.
(1)如圖1,當(dāng)點E與點C重合時,求CM的長;
(2)如圖2,當(dāng)點E在邊AC上時,點E不與點A,C重合,設(shè)AP=x,BN=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
鄭州市花卉種植專業(yè)戶王有才承包了30畝花圃,分別種植康乃馨和玫瑰花,有關(guān)成本、銷售額見下表:
種植種類 | 成本(萬元/畝) | 銷售額(萬元/畝) |
康乃馨 | 2.4 | 3 |
玫瑰花 | 2 | 2.5 |
(1)2012年,王有才種植康乃馨20畝、玫瑰花10畝,求王有才這一年共收益多少萬元?(收益=銷售額-成本)
(2)2013年,王有才繼續(xù)用這30畝花圃全部種植康乃馨和玫瑰花,計劃投入成本不超過70萬元.若每畝種植的成本、銷售額與2012年相同,要獲得最大收益,他應(yīng)種植康乃馨和玫瑰花各多少畝?
(3)已知康乃馨每畝需要化肥500kg,玫瑰花每畝需要化肥700kg,根據(jù)(2)中的種植畝數(shù),為了節(jié)約運輸成本,實際使用的運輸車輛每次裝載化肥的總量是原計劃每次裝載總量的2倍,結(jié)果運輸全部化肥比原計劃減少2次.求王有才原定的運輸車輛每次可裝載化肥多少千克?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com