相關(guān)習(xí)題
 0  116978  116986  116992  116996  117002  117004  117008  117014  117016  117022  117028  117032  117034  117038  117044  117046  117052  117056  117058  117062  117064  117068  117070  117072  117073  117074  117076  117077  117078  117080  117082  117086  117088  117092  117094  117098  117104  117106  117112  117116  117118  117122  117128  117134  117136  117142  117146  117148  117154  117158  117164  117172  366461 

科目: 來源: 題型:

如圖,Rt△ABO的頂點A是雙曲線y=與直線y=-x-(k+1)在第二象限的交點.AB⊥x軸于B,且.

(1)求這兩個函數(shù)的解析式;

(2)求直線與雙曲線的兩個交點A、C的坐標和△AOC的面積.并根據(jù)圖像寫出;

(3)方程的解;

(4)使一次函數(shù)的值大于反比例函數(shù)的值的的取值范圍;

查看答案和解析>>

科目: 來源: 題型:

加工一種產(chǎn)品,需先將材料加熱達到60℃后,再停止加熱進行加工,設(shè)該材料溫度為y﹙℃﹚,從加熱開始計算的時間為x(分鐘).據(jù)了解,該材料在加熱時,溫度y是時間x的一次函數(shù),停止加熱進行加工時,溫度y與時間x成反比例關(guān)系(如圖所示),己知該材料在加熱前的溫度為l5℃,加熱5分鐘后溫度達到60℃.

(1)分別求出將材料加熱和加工時,y與x的函數(shù)關(guān)系式(不必寫出自變量的取值范圍);

(2)根據(jù)工藝要求,當(dāng)材料的溫度低于l5℃時,必須停止加工,那么加工時間是多少分鐘?

查看答案和解析>>

科目: 來源: 題型:

如圖,在平面直角坐標系中,點0為坐標原點,直線交x軸于點A,交y軸于點B,BD平分∠AB0,點C是x軸的正半軸上一點,連接BC,且AC=AB.

(1)求直線BD的解析式:

(2)過C作CH∥y軸交直線AB于點H,點P是射線CH上的一個動點,過點P作PE⊥CH,直線PE交直線BD于E、交直線BC于F,設(shè)線段EF的長為d(d≠0),點P的縱坐標為t,求d與t之間的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;

(3)在(2)的條件下,取線段AB的中點M,y軸上有一點N.試問:是否存在這樣的t的值,使四邊形PEMN是平行四邊形,若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發(fā),沿軸以每秒1個單位長的速度向上移動,且過點P的直線l:也隨之移動,設(shè)移動時間為t秒.

(1)當(dāng)t=3時,求l的解析式;

(2)若點M,N位于l的異側(cè),確定t的取值范圍;

(3)直接寫出t為何值時,點M關(guān)于l的對稱點落在坐標軸上.

查看答案和解析>>

科目: 來源: 題型:

某地為改善生態(tài)環(huán)境,積極開展植樹造林,甲、乙兩人從近幾年的統(tǒng)計數(shù)據(jù)中有如下發(fā)現(xiàn):

(1)求y2與x之間的函數(shù)關(guān)系式?

(2)若上述關(guān)系不變,試計算哪一年該地公益林面積可達防護林面積的2倍?這時該地公益林的面積為多少萬畝?

查看答案和解析>>

科目: 來源: 題型:

如圖,已知一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象交于A(1,-3),B(3,m)兩點,連接OA、OB.

 

(1)求兩個函數(shù)的解析式;(2)求△AOB的面積.

查看答案和解析>>

科目: 來源: 題型:

為預(yù)防甲型H1N1流感,某校對教室噴灑藥物進行消毒.已知噴灑藥物時每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成正比,藥物噴灑完后,y與x成反比例(如圖所示).現(xiàn)測得10分鐘噴灑完后,空氣中每立方米的含藥量為8毫克.

(1)求噴灑藥物時和噴灑完后,y關(guān)于x的函數(shù)關(guān)系式;

(2)若空氣中每立方米的含藥量低于2毫克學(xué)生方可進教室,問消毒開始后至少要經(jīng)過多少分鐘,學(xué)生才能回到教室?

(3)如果空氣中每立方米的含藥量不低于4毫克,且持續(xù)時間不低于10分鐘時,才能殺滅流感病毒,那么此次消毒是否有效?為什么?

查看答案和解析>>

科目: 來源: 題型:

小明在一次數(shù)學(xué)興趣小組活動中,對一個數(shù)學(xué)問題作如下探究:

問題情境:如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連結(jié)AE并延長交BC的延長線于點F.求證:S四邊形ABCD=SABF.(S表示面積)

問題遷移:如圖2,在已知銳角∠AOB內(nèi)有一定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值.請問當(dāng)直線MN在什么位置時,△MON的面積最小,并說明理由.

實際應(yīng)用:如圖3,若在道路OA、OB之間有一村莊Q發(fā)生疫情,防疫部分計劃以公路OA、OB和經(jīng)過防疫站的一條直線MN為隔離線,建立一個面積最小的三角形隔離區(qū)△MON.若測得∠AOB=66º,∠POB=30º,OP=4km,試求△MON的面積.(結(jié)果精確到0.1km2)(參考數(shù)據(jù):sin66º≈0.91,tan66º≈2.25,≈1.73)

拓展延伸:如圖4,在平面直角坐標系中,O為坐標原點,點A、B、C、P的坐標分別為(6,0)、(6,3)、、(4,2),過點P的直線l與四邊形OABC一組對邊相交,將四邊形OABC分成兩個四邊形,求其中以點O為頂點的四邊形的面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

在Rt△ABC中,∠ACB=90°,BC=30,AB=50,點P是AB邊上任意一點,直線PE⊥AB,與邊AC相交于E,此時Rt△AEP∽Rt△ABC,點M在線段AP上,點N在線段BP上,EM=EN,EP:EM=12:13.

(1)如圖1,當(dāng)點E與點C重合時,求CM的長;

(2)如圖2,當(dāng)點E在邊AC上時,點E不與點A,C重合,設(shè)AP=x,BN=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.

 

查看答案和解析>>

科目: 來源: 題型:

鄭州市花卉種植專業(yè)戶王有才承包了30畝花圃,分別種植康乃馨和玫瑰花,有關(guān)成本、銷售額見下表:

種植種類

成本(萬元/畝)

銷售額(萬元/畝)

康乃馨

2.4

3

玫瑰花

2

2.5

(1)2012年,王有才種植康乃馨20畝、玫瑰花10畝,求王有才這一年共收益多少萬元?(收益=銷售額-成本)

(2)2013年,王有才繼續(xù)用這30畝花圃全部種植康乃馨和玫瑰花,計劃投入成本不超過70萬元.若每畝種植的成本、銷售額與2012年相同,要獲得最大收益,他應(yīng)種植康乃馨和玫瑰花各多少畝?

(3)已知康乃馨每畝需要化肥500kg,玫瑰花每畝需要化肥700kg,根據(jù)(2)中的種植畝數(shù),為了節(jié)約運輸成本,實際使用的運輸車輛每次裝載化肥的總量是原計劃每次裝載總量的2倍,結(jié)果運輸全部化肥比原計劃減少2次.求王有才原定的運輸車輛每次可裝載化肥多少千克?

查看答案和解析>>

同步練習(xí)冊答案