相關(guān)習(xí)題
 0  126952  126960  126966  126970  126976  126978  126982  126988  126990  126996  127002  127006  127008  127012  127018  127020  127026  127030  127032  127036  127038  127042  127044  127046  127047  127048  127050  127051  127052  127054  127056  127060  127062  127066  127068  127072  127078  127080  127086  127090  127092  127096  127102  127108  127110  127116  127120  127122  127128  127132  127138  127146  366461 

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形OABC是矩形,點B的坐標(biāo)為(4,3).平行于對角線AC的直線m從原點O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設(shè)直線m與矩形OABC的兩邊分別交于點M、N,直線m運動的時間為t(秒).
(1)點A的坐標(biāo)是______,點C的坐標(biāo)是______;
(2)當(dāng)t=______秒或______秒時,MN=AC;
(3)設(shè)△OMN的面積為S,求S與t的函數(shù)關(guān)系式;
(4)探求(3)中得到的函數(shù)S有沒有最大值?若有,求出最大值;若沒有,要說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知拋物線P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(點A在x軸的正半軸上),與y軸交于點C,矩形DEFG的一條邊DE在線段AB上,頂點F、G分別在線段BC、AC上,拋物線P上部分點的橫坐標(biāo)對應(yīng)的縱坐標(biāo)如下:
x-3-212
y-4
(1)求A、B、C三點的坐標(biāo);
(2)若點D的坐標(biāo)為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時,連接DF并延長至點M,使FM=k•DF,若點M不在拋物線P上,求k的取值范圍.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O(shè)為坐標(biāo)原點,OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點B在第一象限內(nèi).將Rt△OAB沿OB折疊后,點A落在第一象限內(nèi)的點C處.
(1)求點C的坐標(biāo);
(2)若拋物線y=ax2+bx(a≠0)經(jīng)過C、A兩點,求此拋物線的解析式;
(3)若拋物線的對稱軸與OB交于點D,點P為線段DB上一點,過P作y軸的平行線,交拋物線于點M.問:是否存在這樣的點P,使得四邊形CDPM為等腰梯形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
注:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為,對稱軸公式為x=-

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y=x2-2x-3與x軸交A、B兩點(A點在B點左側(cè)),直線l與拋物線交于A、C兩點,其中C點的橫坐標(biāo)為2.
(1)求A、B兩點的坐標(biāo)及直線AC的函數(shù)表達(dá)式;
(2)P是線段AC上的一個動點,過P點作y軸的平行線交拋物線于E點,求線段PE長度的最大值;
(3)點G拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知二次函數(shù)圖象的頂點坐標(biāo)為C(1,0),直線y=x+m與該二次函數(shù)的圖象交于A、B兩點,其中A點的坐標(biāo)為(3,4),B點在軸y上.
(1)求m的值及這個二次函數(shù)的關(guān)系式;
(2)P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于點E,設(shè)線段PE的長為h,點P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在一點P,使得四邊形DCEP是平行四形?若存在,請求出此時P點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點C(0,4)為圓心,半徑為4的圓交y軸正半軸于點A,AB是⊙C的切線.動點P從點A開始沿AB方向以每秒1個單位長度的速度運動,點Q從O點開始沿x軸正方向以每秒4個單位長度的速度運動,且動點P、Q從點A和點O同時出發(fā),設(shè)運動時間為t(秒).
(1)當(dāng)t=1時,得到P1、Q1兩點,求經(jīng)過A、P1、Q1三點的拋物線解析式及對稱軸l;
(2)當(dāng)t為何值時,直線PQ與⊙C相切并寫出此時點P和點Q的坐標(biāo);
(3)在(2)的條件下,拋物線對稱軸l上存在一點N,使NP+NQ最小,求出點N的坐標(biāo)并說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在△ABC中,∠C=Rt∠,AC=4cm,BC=5cm,點D在BC上,并且CD=3cm,現(xiàn)有兩個動點P、Q分別從點A和點B同時出發(fā),其中點P以1cm/s的速度,沿AC向終點C移動;點Q以1.25cm/s的速度沿BC向終點C移動.過點P作PE∥BC交AD于點E,連接EQ,設(shè)動點運動時間為x秒.
(1)用含x的代數(shù)式表示AE、DE的長度;
(2)當(dāng)點Q在BD(不包括點B、D)上移動時,設(shè)△EDQ的面積為y(cm2),求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)當(dāng)x為何值時,△EDQ為直角三角形?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在△OAB中,∠B=90°,∠BOA=30°,OA=4,將△OAB繞點O按逆時針方向旋轉(zhuǎn)至△OA′B′,C點的坐標(biāo)為(0,4).
(1)求A′點的坐標(biāo);
(2)求過C,A′,A三點的拋物線y=ax2+bx+c的解析式;
(3)在(2)中的拋物線上是否存在點P,使以O(shè),A,P為頂點的三角形是等腰直角三角形?若存在,求出所有點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y=x2+bx-c經(jīng)過直線y=x-3與坐標(biāo)軸的兩個交點A,B,此拋物線與x軸的另一個交點為C,拋物線的頂點為D.
(1)求此拋物線的解析式;
(2)點P為拋物線上的一個動點,求使S△APC:S△ACD=5:4的點P的坐標(biāo).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在矩形ABCD中,AB=2AD,線段EF=10.在EF上取一點M,分別以EM、MF為一邊作矩形EMNH、矩形MFGN,使矩形MFGN∽矩形ABCD.令MN=x,當(dāng)x為何值時,矩形EMNH的面積S有最大值,最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案