相關習題
 0  127011  127019  127025  127029  127035  127037  127041  127047  127049  127055  127061  127065  127067  127071  127077  127079  127085  127089  127091  127095  127097  127101  127103  127105  127106  127107  127109  127110  127111  127113  127115  127119  127121  127125  127127  127131  127137  127139  127145  127149  127151  127155  127161  127167  127169  127175  127179  127181  127187  127191  127197  127205  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應用(解析版) 題型:解答題

已知如圖,矩形OABC的長OA=,寬OC=1,將△AOC沿AC翻折得△APC.
(1)填空:∠PCB=______度,P點坐標為______

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應用(解析版) 題型:解答題

將一把三角尺放在邊長為1的正方形ABCD上,并使它的直角頂點P在對角線AC上滑動,直角的一邊始終經(jīng)過點B,另一邊與射線DC相交于點Q.設A、P兩點間的距離為x.
(1)當點Q在邊CD上時,請你測量線段PQ與線段PB的長度(至少兩次),將你測量的實際結(jié)果填入下表,由此猜想線段PQ與線段PB之間有怎樣的大小關系并證明你得到的結(jié)論;
  線段PQ的長度 線段PB的長度
 第一次  
 第二次  
(2)當點Q在邊CD上時,設線段CQ的長度為y,求y與x之閭的函數(shù)解析式,并寫出x的取值范圍;
(3)當點Q在邊DC的延長線上時,設線段CQ的長度為y,求y與x之間的函數(shù)解析式,并寫出x的取值范圍;
(4)當點P在線段AC上滑動時,△PCQ的面積s能否等于?如果可能,求出相應的x值;如果不可能,試說明理由.(圖①,②,③的形狀大小相同,圖①供操作、實驗用,圖②,③備用).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應用(解析版) 題型:解答題

已知,如圖,在直角坐標系中,矩形OABC的對角線AC所在直線解析式為y=-x+1.
(1)在x軸上存在這樣的點M,使AMB為等腰三角形,求出所有符合要求的點M的坐標;
(2)動點P從點C開始在線段CO上以每秒個單位長度的速度向點O移動,同時,動點Q從點O開始在線段OA上以每秒1個單位長度的速度向點A移動.設P、Q移動的時間為t秒.
①是否存在這樣的時刻2,使△OPQ與△BCP相似,并說明理由;
②設△BPQ的面積為S,求S與t間的函數(shù)關系式,并求出t為何值時,S有最小值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應用(解析版) 題型:解答題

已知拋物線y=x2-4x+m與x軸相交于A,B兩點(B點在A點的左邊),與y軸的負半軸相交于點C.
(1)求拋物線的對稱軸和頂點坐標(用數(shù)或含m的代數(shù)式表示);
(2)若AB=6,求拋物線的解析式;
(3)在(2)的拋物線上是否存在點P,使△AOP≌△COP?如果存在,請確定點P的位置,并求出點P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應用(解析版) 題型:解答題

已知拋物線y=ax2+6x-8與直線y=-3x相交于點A(1,m).
(1)求拋物線的解析式;
(2)請問(1)中的拋物線經(jīng)過怎樣的平移就可以得到y(tǒng)=ax2的圖象?
(3)設拋物線y=ax2上依次有點P1,P2,P3,P4,…,其中橫坐標依次是2,4,6,8,…,縱坐標依次為n1,n2,n3,n4,…,試求n3-n1003的值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應用(解析版) 題型:解答題

如圖,二次函數(shù)y=ax2的圖象與一次函數(shù)y=x+b的圖象相交于A(-2,2),B兩點,從點A和點B分別引平行于y軸的直線與x軸分別交于C,D兩點,點P(t,0),Q(4,t+3)分別為線段CD和BD上的動點,過點P且平行于y軸的直線與拋物線和直線分別交于R,S.
(1)求一次函數(shù)和二次函數(shù)的解析式,并求出點B的坐標;
(2)指出二次函數(shù)中,函數(shù)y隨自變量x增大或減小的情況;
(3)當SR=2RP時,求t的值;
(4)當S△BRQ=15時,求t的值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應用(解析版) 題型:解答題

二次函數(shù)y=x2的圖象如圖所示,過y軸上一點M(0,2)的直線與拋物線交于A,B兩點,過點A,B分別作y軸的垂線,垂足分別為C,D.
(1)當點A的橫坐標為-2時,求點B的坐標;
(2)在(1)的情況下,分別過點A,B作AE⊥x軸于E,BF⊥x軸于F,在EF上是否存在點P,使∠APB為直角?若存在,求點P的坐標;若不存在,請說明理由;
(3)當點A在拋物線上運動時(點A與點O不重合),求AC•BD的值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應用(解析版) 題型:解答題

如圖,在Rt△ABC中,∠C=90°,AC=12,BC=16,動點P從點A出發(fā)沿AC邊向點C以每秒3個單位長的速度運動,動點Q從點C出發(fā)沿CB邊向點B以每秒4個單位長的速度運動.P,Q分別從點A,C同時出發(fā),當其中一點到達端點時,另一點也隨之停止運動.在運動過程中,△PCQ關于直線PQ對稱的圖形是△PDQ.設運動時間為t(秒).
(1)設四邊形PCQD的面積為y,求y與t的函數(shù)關系式;
(2)t為何值時,四邊形PQBA是梯形;
(3)是否存在時刻t,使得PD∥AB?若存在,求出t的值;若不存在,請說明理由;
(4)通過觀察、畫圖或折紙等方法,猜想是否存在時刻t,使得PD⊥AB?若存在,請估計t的值在括號中的哪個時間段內(nèi)(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,請簡要說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應用(解析版) 題型:解答題

圖1至圖7的正方形霓虹燈廣告牌ABCD都是20×20的等距網(wǎng)格(每個小方格的邊長均為1個單位長),其對稱中心為點O.
如圖1,有一個邊長為6個單位長的正方形EFGH的對稱中心也是點O,它每秒1個單位長的速度由起始位置向外擴大(即點O不動,正方形EFGH經(jīng)過一秒由6×6擴大為8×8;再經(jīng)過一秒,由8×8擴大為10×10;…),直到充滿正方形ABCD,再以同樣的速度逐步縮小到起始時的大小,然后一直不斷地以同樣速度再擴大、再縮。
另有一個邊長為6個單位長的正方形MNPQ從如圖1所示的位置開始,以每秒1個單位長的速度,沿正方形ABCD的內(nèi)側(cè)邊緣按A?B?C?D?A移動(即正方形MNPQ從點P與點A重合位置開始,先向左平移,當點Q與點B重合時,再向上平移,當點M與點C重合時,再向右平移,當點N與點D重合時,再向下平移,到達起始位置后仍繼續(xù)按上述方式移動).
正方形EFGH和正方形MNPQ從如圖1的位置同時開始運動,設運動時間為x秒,它們的重疊部分面積為y個平方單位.
(1)請你在圖2和圖3中分別畫出x為2秒、18秒時,正方形EFGH和正方形MNPQ的位置及重疊部分(重疊部分用陰影表示),并分別寫出重疊部分的面積;
(2)①如圖4,當1≤x≤3.5時,求y與x的函數(shù)關系式;
②如圖5,當3.5≤x≤7時,求y與x的函數(shù)關系式;
③如圖6,當7≤x≤10.5時,求y與x的函數(shù)關系式;
④如圖7,當10.5≤x≤13時,求y與x的函數(shù)關系式.
(3)對于正方形MNPQ在正方形ABCD各邊上移動一周的過程,請你根據(jù)重疊部分面積y的變化情況,指出y取得最大值和最小值時,相對應的x的取值情況,并指出最大值和最小值分別是多少.(說明:問題(3)是額外加分題,加分幅度為1~4分)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(46):2.3 二次函數(shù)的應用(解析版) 題型:解答題

已知拋物線y1=x2-2x+c的部分圖象如圖1所示.
(1)求c的取值范圍;
(2)若拋物線經(jīng)過點(0,-1),試確定拋物線y1=x2-2x+c的解析式;
(3)若反比例函數(shù)的圖象經(jīng)過(2)中拋物線上點(1,a),試在圖2所示直角坐標系中,畫出該反比例函數(shù)及(2)中拋物線的圖象,并利用圖象比較y1與y2的大。

查看答案和解析>>

同步練習冊答案