相關(guān)習(xí)題
 0  129566  129574  129580  129584  129590  129592  129596  129602  129604  129610  129616  129620  129622  129626  129632  129634  129640  129644  129646  129650  129652  129656  129658  129660  129661  129662  129664  129665  129666  129668  129670  129674  129676  129680  129682  129686  129692  129694  129700  129704  129706  129710  129716  129722  129724  129730  129734  129736  129742  129746  129752  129760  366461 

科目: 來源:第26章《二次函數(shù)》中考題集(34):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a>0)與坐標(biāo)軸交于點A、B、C且OA=1,OB=OC=3.
(1)求此二次函數(shù)的解析式;
(2)寫出頂點坐標(biāo)和對稱軸方程;
(3)點M、N在y=ax2+bx+c的圖象上(點N在點M的右邊),且MN∥x軸,求以MN為直徑且與x軸相切的圓的半徑.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(34):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖所示,點A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點,已知點D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點C的“蛋圓”切線的解析式嗎?試試看;
(3)開動腦筋想一想,相信你能求出經(jīng)過點D的“蛋圓”切線的解析式.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(34):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖1所示,直角梯形OABC的頂點A、C分別在y軸正半軸與x軸負(fù)半軸上.過點B、C作直線l.將直線l平移,平移后的直線l與x軸交于點D,與y軸交于點E.
(1)將直線l向右平移,設(shè)平移距離CD為t(t≥0),直角梯形OABC被直線l掃過的面積(圖中陰影部分)為s,s關(guān)于t的函數(shù)圖象如圖2所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標(biāo)為4.
①求梯形上底AB的長及直角梯形OABC的面積,
②當(dāng)2<t<4時,求S關(guān)于t的函數(shù)解析式;
(2)在第(1)題的條件下,當(dāng)直線l向左或向右平移時(包括l與直線BC重合),在直線AB上是否存在點P,使△PDE為等腰直角三角形?若存在,請直接寫出所有滿足條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(34):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖1,已知四邊形OABC中的三個頂點坐標(biāo)為O(0,0),A(0,n),C(m,0).動點P從點O出發(fā)依次沿線段OA,AB,BC向點C移動,設(shè)移動路程為z,△OPC的面積S隨著z的變化而變化的圖象如圖2所示.m,n是常數(shù),m>1,n>0.
(1)請你確定n的值和點B的坐標(biāo);
(2)當(dāng)動點P是經(jīng)過點O,C的拋物線y=ax2+bx+c的頂點,且在雙曲線y=上時,求這時四邊形OABC的面積.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(34):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

已知:如圖,拋物線y=-x2+bx+c與x軸、y軸分別相交于點A(-1,0)、B(0,3)兩點,其頂點為D.
(1)求該拋物線的解析式;
(2)若該拋物線與x軸的另一個交點為E.求四邊形ABDE的面積;
(3)△AOB與△BDE是否相似?如果相似,請予以證明;如果不相似,請說明理由.
(注:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(34):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,直線y=x+b經(jīng)過點B(-,2),且與x軸交于點A,將拋物線y=x2沿x軸作左右平移,記平移后的拋物線為C,其頂點為P.
(1)求∠BAO的度數(shù);
(2)拋物線C與y軸交于點E,與直線AB交于兩點,其中一個交點為F,當(dāng)線段EF∥x軸時,求平移后的拋物線C對應(yīng)的函數(shù)關(guān)系式;
(3)在拋物線y=x2平移過程中,將△PAB沿直線AB翻折得到△DAB,點D能否落在拋物線C上?如能,求出此時拋物線C頂點P的坐標(biāo);如不能,說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(34):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,拋物線L1:y=-x2-2x+3交x軸于A,B兩點,交y軸于M點.將拋物線L1向右平移2個單位后得到拋物線L2,L2交x軸于C,D兩點.
(1)求拋物線L2對應(yīng)的函數(shù)表達(dá)式;
(2)拋物線L1或L2在x軸上方的部分是否存在點N,使以A,C,M,N為頂點的四邊形是平行四邊形?若存在,求出點N的坐標(biāo);若不存在,請說明理由;
(3)若點P是拋物線L1上的一個動點(P不與點A,B重合),那么點P關(guān)于原點的對稱點Q是否在拋物線L2上?請說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(34):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,四邊形OABC是矩形,OA=4,OC=8,將矩形OABC沿直線AC折疊,使點B落在D處,AD交OC于E.
(1)求OE的長;
(2)求過O,D,C三點拋物線的解析式;
(3)若F為過O,D,C三點拋物線的頂點,一動點P從點A出發(fā),沿射線AB以每秒1個單位長度的速度勻速運動,當(dāng)運動時間t(秒)為何值時,直線PF把△FAC分成面積之比為1:3的兩部分.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,平面直角坐標(biāo)系中有一矩形紙片OABC,O為原點,點A,C分別在x軸,y軸上,點B坐標(biāo)為(m,)(其中m>0),在BC邊上選取適當(dāng)?shù)狞cE和點F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點B與點G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點P的坐標(biāo)(不要求寫出求解過程).

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(36):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,已知平面直角坐標(biāo)系xoy中,有一矩形紙片OABC,O為坐標(biāo)原點,AB∥x軸,B(3,),現(xiàn)將紙片按如圖折疊,AD,DE為折痕,∠OAD=30度.折疊后,點O落在點O1,點C落在線段AB點C1處,并且DO1與DC1在同一直線上.
(1)求折痕AD所在直線的解析式;
(2)求經(jīng)過三點O,C1,C的拋物線的解析式;
(3)若⊙P的半徑為R,圓心P在(2)的拋物線上運動,⊙P與兩坐標(biāo)軸都相切時,求⊙P半徑R的值.

查看答案和解析>>

同步練習(xí)冊答案