科目: 來源:2012年初中畢業(yè)升學(xué)考試(重慶卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,在Rt△ABC中,∠BAC=90°,點D在BC邊上,且△ABD是等邊三角形.若AB=2,求△ABC的周長.(結(jié)果保留根號)
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(重慶卷)數(shù)學(xué)(解析版) 題型:解答題
已知:如圖,在平面直角坐標系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于一、三象限內(nèi)的A.B兩點,與x軸交于C點,點A的坐標為(2,m),點B的坐標為(n,-2),tan∠BOC=。
(l)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上有一點E(O點除外),使得△BCE與△BCO的面積相等,求出點E的坐標.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(重慶卷)數(shù)學(xué)(解析版) 題型:解答題
高中招生指標到校是我市中考招生制度改革的一項重要措施.某初級中學(xué)對該校近四年指標到校保送生人數(shù)進行了統(tǒng)計,制成了如下兩幅不完整的統(tǒng)計圖:
(1)該校近四年保送生人數(shù)的極差是 .請將折線統(tǒng)計圖補充完整;
(2)該校2009年指標到校保送生中只有1位女同學(xué),學(xué)校打算從中隨機選出2位同學(xué)了解他們進人高中階段的學(xué)習(xí)情況.請用列表法或畫樹狀圖的方法,求出所選兩位同學(xué)恰好是1位男同學(xué)和1位女同學(xué)的概率.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(重慶卷)數(shù)學(xué)(解析版) 題型:解答題
已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠2.
(1)若CE=1,求BC的長;
(2)求證:AM=DF+ME.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(重慶卷)數(shù)學(xué)(解析版) 題型:解答題
企業(yè)的污水處理有兩種方式,一種是輸送到污水廠進行集中處理,另一種是通過企業(yè)的自身設(shè)備進行處理.某企業(yè)去年每月的污水量均為12000噸,由于污水廠處于調(diào)試階段,污水處理能力有限,該企業(yè)投資自建設(shè)備處理污水,兩種處理方式同時進行.1至6月,該企業(yè)向污水廠輸送的污水量y1(噸)與月份x(1≤x≤6,且x取整數(shù))之間滿足的函數(shù)關(guān)系如下表:
7至12月,該企業(yè)自身處理的污水量y2(噸)與月份x(7≤x≤12,且x取整數(shù))之間滿足二次函數(shù)關(guān)系式為.其圖象如圖所示.1至6月,污水廠處理每噸污水的費用:(元)與月份x之間滿足函數(shù)關(guān)系式:,該企業(yè)自身處理每噸污水的費用:(元)與月份x之間滿足函數(shù)關(guān)系式:;7至12月,污水廠處理每噸污水的費用均為2元,該企業(yè)自身處理每噸污水的費用均為1.5元.
(1)請觀察題中的表格和圖象,用所學(xué)過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,分別直接寫出與x之間的函數(shù)關(guān)系式;
(2)請你求出該企業(yè)去年哪個月用于污水處理的費用W(元)最多,并求出這個最多費用;
(3)今年以來,由于自建污水處理設(shè)備的全面運行,該企業(yè)決定擴大產(chǎn)能并將所有污水全部自身處理,估計擴大產(chǎn)能后今年每月的污水量都將在去年每月的基礎(chǔ)上增加a%,同時每噸污水處理的費用將在去年12月份的基礎(chǔ)上增加(a﹣30)%,為鼓勵節(jié)能降耗,減輕企業(yè)負擔(dān),財政對企業(yè)處理污水的費用進行50%的補助.若該企業(yè)每月的污水處理費用為18000元,請計算出a的整數(shù)值.
(參考數(shù)據(jù):≈15.2,≈20.5,≈28.4)
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(重慶卷)數(shù)學(xué)(解析版) 題型:解答題
已知:如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3.E為BC邊上一點,以BE為邊作正方形BEFG,使正方形BEFG和梯形ABCD在BC的同側(cè).
(1)當(dāng)正方形的頂點F恰好落在對角線AC上時,求BE的長;
(2)將(1)問中的正方形BEFG沿BC向右平移,記平移中的正方形BEFC為正方形B′EFG,當(dāng)點E與點C重合時停止平移.設(shè)平移的距離為t,正方形B′EFG的邊EF與AC交于點M,連接B′D,B′M,DM,是否存在這樣的t,使△B′DM是直角三角形?若存在,求出t的值;若不存在,請說明理由;
(3)在(2)問的平移過程中,設(shè)正方形B′EFG與△ADC重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍.
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(陜西卷)數(shù)學(xué)(解析版) 題型:選擇題
如果零上5 ℃記做+5 ℃,那么零下7 ℃可記作( )
A.-7 ℃ B.+7 ℃ C.+12 ℃ D.-12 ℃
查看答案和解析>>
科目: 來源:2012年初中畢業(yè)升學(xué)考試(陜西卷)數(shù)學(xué)(解析版) 題型:選擇題
如圖,是由三個相同的小正方體組成的幾何體,該幾何體的左視圖是( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com