科目: 來源: 題型:解答題
如圖,EF∥AD,∠1=∠2,∠BAC=80°,將求∠AGD的過程填寫完整.
∵EF//AD,
∴∠2= ( )
又∵∠1=∠2,
∴∠1=∠3( )
∴AB// ( )
∴∠BAC+ =180°( )
∵∠BAC=80°,
∴∠AGD=
查看答案和解析>>
科目: 來源: 題型:解答題
已知:如圖,EF⊥AB,CD⊥AB,AC⊥BC,∠1=∠2,求證:DG⊥BC
證明:∵EF⊥AB CD⊥AB
∴∠EFA=∠CDA=90°(垂直定義)
∠1=∠
∴EF∥CD
∴∠1=∠2(已知)
∴∠2=∠ACD(等量代換)
∴DG∥AC
∴∠DGB=∠ACB
∵AC⊥BC(已知)
∴∠ACB=90°(垂直定義)
∴∠DGB=90°即DG⊥BC.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知AD⊥BC于D,BG⊥BC于G,AE=AF,說明AD平分∠BAC,下面是小穎的解答過程,請(qǐng)補(bǔ)充完整。
解:∵AD⊥BC,BG⊥BC(已知)
∴∠4=∠5=90°(垂直定義)
∴__________∥____________( )
∴∠2=_______________( )
∠1=_____________( )
又∵AE=AF(已知)
∴∠3=_____________( )
∴∠1=∠2(等量代換)
∴AD平分∠BAC(角平分線定義)
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知AB∥CD,∠AEC=90°,那么∠A與∠C的度數(shù)和為多少度?為什么?
解:∠A與∠C的度數(shù)和為 _________ .
理由:過點(diǎn)E作EF∥AB,
∵EF∥AB,
∴∠A+∠AEF=180°( _________ ).
∵AB∥CD( _________ ),EF∥AB,
∴EF∥CD( _________ )
∴ _________ (兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠A+∠AEF+∠CEF+∠C= _________ °(等式的性質(zhì))
即∠A+∠AEC+∠C= _________ °
∵∠AEC=90°(已知)
∴∠A+∠C= _________ °(等式的性質(zhì)).
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°
(1)∠DCA的度數(shù);
(2)∠DCE的度數(shù).
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,AB⊥CD,CD⊥BD,∠A=∠FEC.以下是小貝同學(xué)證明CD∥EF的推理過程或理由,請(qǐng)你在橫線上補(bǔ)充完整其推理過程或理由.
證明:∵AB⊥CD,CD⊥BD(已知)
∴∠ABD=∠CDB=90°( )∴∠ABD+∠CDB=180°.
∴AB∥( )( )
∵∠A=∠FEC(已知)
∴AB∥( ( )
∴CD∥EF( )
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,若∠1=∠2,∠3=∠4,則∠A=∠F,請(qǐng)說明理由.
解:∵∠1=∠2(已知),∠2=∠DGF( )
∴∠1=∠DGF
∴BD∥CE( )
∴∠3+∠C=180º( )
又∵∠3=∠4(已知)
∴∠4+∠C=180º
∴ ∥ (同旁內(nèi)角互補(bǔ),兩直線平行)
∴∠A=∠F( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com