科目: 來源: 題型:解答題
閱讀理解:
如圖1,在四邊形ABCD的邊AB上任取一點E(點E不與點A、點B重合),分別連接ED,EC,可以把四邊形ABCD分成三個三角形,如果其中有兩個三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點;如果這三個三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強相似點.解決問題:
(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點E是否是四邊形ABCD的邊AB上的相似點,并說明理由;
(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點均在正方形網(wǎng)格(網(wǎng)格中每個小正方形的邊長為1)的格點(即每個小正方形的頂點)上,試在圖2中畫出矩形ABCD的邊AB上的一個強相似點E;
拓展探究:
(3)如圖3,將矩形ABCD沿CM折疊,使點D落在AB邊上的點E處.若點E恰好是四邊形ABCM的邊AB上的一個強相似點,試探究AB和BC的數(shù)量關系.
查看答案和解析>>
科目: 來源: 題型:解答題
(2013年四川南充8分)如圖,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P為BC邊上一點(不與B,C重合),過點P作∠APE=∠B,PE交CD 于E.
(1)求證:△APB∽△PEC;
(2)若CE=3,求BP的長.
查看答案和解析>>
科目: 來源: 題型:解答題
(2013年四川綿陽14分)我們知道,三角形的三條中線一定會交于一點,這一點就叫做三角形的重心.重心有很多美妙的性質(zhì),如關于線段比.面積比就有一些“漂亮”結論,利用這些性質(zhì)可以解決三角形中的若干問題.請你利用重心的概念完成如下問題:
(1)若O是△ABC的重心(如圖1),連結AO并延長交BC于D,證明:;
(2)若AD是△ABC的一條中線(如圖2),O是AD上一點,且滿足,試判斷O是△ABC的重心嗎?如果是,請證明;如果不是,請說明理由;
(3)若O是△ABC的重心,過O的一條直線分別與AB、AC相交于G、H(均不與△ABC的頂點重合)(如圖3),S四邊形BCHG,S△AGH分別表示四邊形BCHG和△AGH的面積,試探究的最大值.
查看答案和解析>>
科目: 來源: 題型:解答題
(2013年四川綿陽12分)如圖,已知矩形OABC中,OA=2,AB=4,雙曲線(k>0)與矩形兩邊AB、BC分別交于E、F.
(1)若E是AB的中點,求F點的坐標;
(2)若將△BEF沿直線EF對折,B點落在x軸上的D點,作EG⊥OC,垂足為G,證明△EGD∽△DCF,并求k的值.
查看答案和解析>>
科目: 來源: 題型:解答題
為了測量旗桿AB的高度.甲同學畫出了示意圖1,并把測量結果記錄如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同學畫出了示意圖2,并把測量結果記錄如下,DE⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.
(1)請你幫助甲同學計算旗桿AB的高度(用含a、b、c的式子表示);
(2)請你幫助乙同學計算旗桿AB的高度(用含m、n、α的式子表示).
查看答案和解析>>
科目: 來源: 題型:解答題
在Rt△ABC,∠C=90°,D為AB邊上一點,點M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點F,NE⊥AB于點E.
(1)特殊驗證:如圖1,若AC=BC,且D為AB中點,求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點,(1)中的兩個結論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點M在BC邊上”改為“點M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關系并加以證明.
查看答案和解析>>
科目: 來源: 題型:解答題
定義:如圖1,點C在線段AB上,若滿足AC2=BC•AB,則稱點C為線段AB的黃金分割點.
如圖2,△ABC中,AB=AC=1,∠A=36°,BD平分∠ABC交AC于點D.
(1)求證:點D是線段AC的黃金分割點;
(2)求出線段AD的長.
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在等腰梯形ABCD中,DC∥AB,E是DC延長線上的點,連接AE,交BC于點F。
(1)求證:△ABF∽△ECF
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的長。
查看答案和解析>>
科目: 來源: 題型:解答題
如圖,在Rt△ABC中,∠C=90°,翻折∠C,使點C落在斜邊AB上某一點D處,折痕為EF(點E、F分別在邊AC、BC上)
(1)若△CEF與△ABC相似.
①當AC=BC=2時,AD的長為 ;
②當AC=3,BC=4時,AD的長為 ;
(2)當點D是AB的中點時,△CEF與△ABC相似嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com