相關習題
 0  217996  218004  218010  218014  218020  218022  218026  218032  218034  218040  218046  218050  218052  218056  218062  218064  218070  218074  218076  218080  218082  218086  218088  218090  218091  218092  218094  218095  218096  218098  218100  218104  218106  218110  218112  218116  218122  218124  218130  218134  218136  218140  218146  218152  218154  218160  218164  218166  218172  218176  218182  218190  366461 

科目: 來源: 題型:閱讀理解

閱讀材料:
如圖1,△ABC和△CDE都是等邊三角形,且點A、C、E在一條直線上,可以證明△ACD≌△BCE,則AD=BE.

解決問題:
(1)將圖1中的△CDE繞點C旋轉(zhuǎn)到圖2,猜想此時線段AD與BE的數(shù)量關系,并證明你的結(jié)論.
(2)如圖2,連接BD,若AC=2cm,CE=1cm,現(xiàn)將△CDE繞點C繼續(xù)旋轉(zhuǎn),則在旋轉(zhuǎn)過程中,△BDE的面積是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.
(3)如圖3,在△ABC中,點D在AC上,點E在BC上,且DE∥AB,將△DCE繞點C按順時針方向旋轉(zhuǎn)得到三角形CD′E′(使∠ACD′<180°),連接BE′,AD′,設AD′分別交BC、BE′于O、F,若△ABC滿足∠ACB=60°,BC=
3
,AC=
2
,
①求
BE′
AD′
的值及∠BFA的度數(shù);
②若D為AC的中點,求△AOC面積的最大值.

查看答案和解析>>

科目: 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動的速度分別為每秒3,4,5 個單位.直線l從與AC重合的位置開始,以每秒
43
個單位的速度沿CB方向平行移動,即移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設運動的時間為t秒,當點P第一次回到點A時,點P和直線l同時停止運動
(1)①當t=3秒時,點P走過的路徑長為
 
;②當t=
 
秒時,點P與點E重合;③當t=
 
秒時,PE∥AB;
(2)當點P在AC邊上運動時,將△PEF繞點E逆時針旋轉(zhuǎn),使得點P的對應點M落在EF上,點F的對應點記為點N,當EN⊥AB時,求t的值;
(3)當點P在折線AC-CB-BA上運動時,作點P關于直線EF的對稱點,記為點Q.在點P與直線l運動的過程中,若形成的四邊形PEQF為菱形,請直接寫出t的值.

查看答案和解析>>

科目: 來源: 題型:

小明在一次數(shù)學興趣小組活動中,對一個數(shù)學問題作如下探究:

(1)如圖1,四邊形ABCD中,AD∥BC,點E為DC邊的中點,連接AE并延長交BC的延長線于點F,求證:S四邊形ABCD=S△ABF(S表示面積)
(2)如圖2:在已知銳角∠AOB內(nèi)有一個定點P.過點P任意作一條直線MN,分別交射線OA、OB于點M、N.小明將直線MN繞著點P旋轉(zhuǎn)的過程中發(fā)現(xiàn),△MON的面積存在最小值,請問當直線MN在什么位置時,△MON的面積最小,并說明理由.
(3)利用(2)的結(jié)論解決下列問題:
我們知道,三角形的三條中線一定會交于一點,這一點就叫做三角形的重心.重心有很多美妙的性質(zhì),如關于線段比.(如圖3)若O是△ABC的重心,連結(jié)AO并延長交BC于D,則
AO
AD
=
2
3
,這樣面積比就有一些“漂亮”結(jié)論,利用這些性質(zhì)解決以下問題.
若O是△ABC的重心,過O的一條直線分別與AB、AC相交于G、H(均不與△ABC的頂點重合)(如圖4),S四邊形BCHG,S△AGH分別表示四邊形BCHG和△AGH的面積,試探究
S四邊形BCHG
S△AGH
的最大值.

查看答案和解析>>

科目: 來源: 題型:

兩個全等的直角三角板ABC和DEF重疊在一起,∠BAC=∠EDF=30°,AC=DF=2.△ABC固定不動,將△DEF沿AC平移(點D在線段AC上移動).
(1)猜想與證明:如圖①,當點D為AC的中點時,請你猜想四邊形BDCE的性狀,并證明結(jié)論;
(2)思考與驗證:如圖②,連接BD,BE,CE,四邊形BDCE的形狀在不斷的變化,它的面積變化嗎?若不變,求出其面積;若變化,請說明理由;
(3)操作與計算:如圖③,當點D為AC的中點時,將點D固定,然后再將△DEF繞點D順時針旋轉(zhuǎn)60°,若點P為線段AC延長線上一動點,求PE+PF的最小值.

查看答案和解析>>

科目: 來源: 題型:

好學的小宸利用電腦作了如下的探索:
(1)如圖①,將邊長為2的等邊三角形復制若干個后向右平移,使一條邊在同一直線上.則△A2C1B1的面積為
 
;
(2)求△A4C3B3的面積;
(3)在保持圖①中各三角形的邊OB1=B1B2=B2B3=B3B4=2不變的前提下,小宸又作了如下探究:將頂點A1、A2、A3、A4向上平移至同一高度(如圖②),若OA4=OB4,試判斷以OA2、OA3和OA4為三邊能否構(gòu)成三角形?若能,請判斷這個三角形的形狀;若不能,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

在等邊三角形ABC中,AD⊥BC于點D.
(1)如圖1,請你直接寫出線段AD與BC之間的數(shù)量關系:AD=
 
BC;
(2)如圖2,若P是線段BC上一個動點(點P不與點B、C重合),聯(lián)結(jié)AP,將線段AP繞點A逆時針旋轉(zhuǎn)60°,得到線段AE,聯(lián)結(jié)CE,猜想線段AD、CE、PC之間的數(shù)量關系,并證明你的結(jié)論;
(3)如圖3,若點P是線段BC延長線上一個動點,(2)中的其他條件不變,按照(2)中的作法,請在圖3中補全圖形,并直接寫出線段AD、CE、PC之間的數(shù)量關系.

查看答案和解析>>

科目: 來源: 題型:

如圖1,在銳角△ABC中,AB=5,AC=4
2
,∠ACB=45°.
計算:求BC的長;
操作:
將圖1中的△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1.如圖2,當點C1在線段CA的延長線上時.
(1)證明:A1C1⊥CC1
(2)求四邊形A1BCC1的面積;
探究:
將圖1中的△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1.連結(jié)AA1,CC1,如圖3.若△ABA1的面積為5,求點C到BC1的距離;
拓展:
將圖1中的△ABC繞點B按逆時針方向旋轉(zhuǎn),得到△A1BC1.點E為線段AB中點,點P是線段AC上的動點,在△ABC繞點B按逆時針方向旋轉(zhuǎn)過程中,點P的對應點是點P1,如圖4.
(1)若點P是線段AC的中點,求線段EP1長度的最大值與最小值;
(2)若點P是線段AC上的任一點,直接寫出線段EP1長度的最大值與最小值.

查看答案和解析>>

科目: 來源: 題型:

如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“勻稱三角形”
(1)已知:如圖,在△ABC中,∠C=90°,BC=2
3
,AB=2
7
.求證:△ABC是“勻稱三角形”;

(2)在平面直角坐標系xOy中,如果三角形的一邊在x軸上,且這邊的中線恰好等于這邊的長,我們又稱這個三角形為“水平勻稱三角形”.如圖,現(xiàn)有10個邊長是1的小正方形組成的長方形區(qū)域記為G,每個小正方形的頂點稱為格點,A(3,0),B(4,0),若C、D(C、D兩點與O不重合)是x軸上的格點,且點C在點A的左側(cè).在G內(nèi)使△PAC與△PBD都是“水平勻稱三角形”的點P共有幾個?其中是否存在橫坐標為整數(shù)的點P,如果存在請求出這個點P的坐標,如果不存在請說明理由.

查看答案和解析>>

科目: 來源: 題型:

問題情境:數(shù)學活動課上,老師提出了一個問題:如圖①,已知在△ABC中,∠ACB=90°,AC=BC,點D為直線AB上的一動點(點D不與點A,B重合)連接CD,以點C為旋轉(zhuǎn)中心,將CD逆時針旋轉(zhuǎn)90°得到CE,連接BE,試探索線段AB,BD,BE之間的數(shù)量關系.
小組展示:“希望”小組展示如下:解:線段AB,BD,BE之間的數(shù)量關系是AB=BE+BD.
證明:如圖①∵∠ACB=90°,∠DCE=90°
∴∠ACB=∠DCE
∴∠ACB=∠DCB=∠DCE-∠DCB
即∠ACD=∠BCE
∵CE是由CD旋轉(zhuǎn)得到.
∴CE=CD
則在△ACD和△BCE中,
AC=BC
∠ACD=∠BCE
CD=CE

∴△ACD≌△BCE(依據(jù)1)
∴AD=BE(依據(jù)2)
∵AB=AD+BD
∴AB=BE+BD
反思與交流:
(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:
 

依據(jù)2:
 

(2)“騰飛”小組提出了與“希望”小組不同的意見,認為還有兩種情況需要考慮,你根據(jù)他們的分類情況直接寫出發(fā)現(xiàn)的結(jié)論:
①如圖②,當點D在線段AB的延長線上時,三條點段AB,BD,BE之間的數(shù)量關系是
 

②如圖③,當點D在線段BA的延長線上時,三條線段AB,BD,BE之間的數(shù)量關系是
 

(3)如圖④,當點D在線段BA的延長線上時,若CD=4,線段DE的中點為F,連接FB,求FB的長度.

查看答案和解析>>

科目: 來源: 題型:

取一張矩形紙片ABCD,沿AD邊上任意一點M折疊后,點D、C分別落在D′、C′的位置,如圖所示.設折痕為MN,D′C′交BC于點E,且∠AM D′=α,∠NE C′=β.
(1)探究α、β之間的數(shù)量關系,并說明理由.
(2)折疊后是否存在△AD′M與△C′EN全等的情況?若存在,請給出證明;若不存在,請直接作出否定的回答,不必說明理由.
(3)設α=30°,當△AD′M是等腰三角形時,試確定點M的位置.

查看答案和解析>>

同步練習冊答案