閱讀下面材料:
定義:與圓的所有切線和割線都有公共點的幾何圖形叫做這個圓的關(guān)聯(lián)圖形.
問題:⊙O的半徑為1,畫一個⊙O的關(guān)聯(lián)圖形.
在解決這個問題時,小明以O(shè)為原點建立平面直角坐標系xOy進行探究,他發(fā)現(xiàn)能畫出很多⊙O的關(guān)聯(lián)圖形,例如:⊙O本身和圖1中的△ABC(它們都是封閉的圖形),以及圖2中以O(shè)為圓心的
(它是非封閉的形),它們都是⊙O的關(guān)聯(lián)圖形.而圖2中以P,Q為端點的一條曲線就不是⊙O的關(guān)聯(lián)圖形.
參考小明的發(fā)現(xiàn),解決問題:
(1)在下列幾何圖形中,⊙O的關(guān)聯(lián)圖形是
(填序號);
①⊙O的外切正多邊形;
②⊙O的內(nèi)接正多邊形;
③⊙O的一個半徑大于1的同心圓.
(2)若圖形G是⊙O的關(guān)聯(lián)圖形,并且它是封閉的,則圖形G的周長的最小值是
;
(3)在圖2中,當⊙O的關(guān)聯(lián)圖形
的弧長最小時,經(jīng)過D,E兩點的直線為y=
;
(4)請你在備用圖中畫出一個⊙O的關(guān)聯(lián)圖形,所畫圖形的長度l小于(2)中圖形G的周長的最小值,并寫出l的值(直接畫出圖形,不寫作法).