科目: 來源: 題型:
【題目】如圖,∠AOB=90°,反比例函數y=﹣ (x<0)的圖象過點A(﹣1,a),反比例函數y= (k>0,x>0)的圖象過點B,且AB∥x軸.
(1)求a和k的值;
(2)過點B作MN∥OA,交x軸于點M,交y軸于點N,交雙曲線y= 于另一點,求△OBC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,小明家在學校O的北偏東60°方向,距離學校80米的A處,小華家在學校O的南偏東45°方向的B處,小華家在小明家的正南方向,求小華家到學校的距離.(結果精確到1米,參考數據: ≈1.41, ≈1.73, ≈2.45)
查看答案和解析>>
科目: 來源: 題型:
【題目】某校決定加強羽毛球、籃球、乒乓球、排球、足球五項球類運動,每位同學必須且只能選擇一項球類運動,對該校學生隨機抽取10%進行調查,根據調查結果繪制了如下不完整的頻數分布表和扇形統(tǒng)計圖:
運動項目 | 頻數(人數) |
羽毛球 | 30 |
籃球 | a |
乒乓球 | 36 |
排球 | b |
足球 | 12 |
請根據以上圖表信息解答下列問題:
(1)頻數分布表中的a= , b=;
(2)在扇形統(tǒng)計圖中,“排球”所在的扇形的圓心角為度;
(3)全校有多少名學生選擇參加乒乓球運動?
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應用:如圖(3),D、E是D、A、E三點所在直線m上的兩動點(D、A、E三點互不重合),點F為∠BAC平分線上的一點,且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=30°,以直角邊AB為直徑作半圓交AC于點D,以AD為邊作等邊△ADE,延長ED交BC于點F,BC=2 ,則圖中陰影部分的面積為 . (結果不取近似值)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中2條直線為l1:y=﹣3x+3,l2:y=﹣3x+9,直線l1交x軸于點A,交y軸于點B,直線l2交x軸于點D,過點B作x軸的平行線交l2于點C,點A、E關于y軸對稱,拋物線y=ax2+bx+c過E、B、C三點,下列判斷中:
①a﹣b+c=0;②2a+b+c=5;③拋物線關于直線x=1對稱;④拋物線過點(b,c);⑤S四邊形ABCD=5,
其中正確的個數有( )
A.5
B.4
C.3
D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD的邊AD在x軸上,點C在y軸的負半軸上,直線BC∥AD,且BC=3,OD=2,將經過A、B兩點的直線l:y=﹣2x﹣10向右平移,平移后的直線與x軸交于點E,與直線BC交于點F,設AE的長為t(t≥0).
(1)四邊形ABCD的面積為;
(2)設四邊形ABCD被直線l掃過的面積(陰影部分)為S,請直接寫出S關于t的函數解析式;
(3)當t=2時,直線EF上有一動點,作PM⊥直線BC于點M,交x軸于點N,將△PMF沿直線EF折疊得到△PTF,探究:是否存在點P,使點T恰好落在坐標軸上?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,點D與點B在AC同側,∠DAC>∠BAC,且DA=DC,過點B作BE∥DA交DC于點E,M為AB的中點,連接MD,ME.
(1)如圖1,當∠ADC=90°時,線段MD與ME的數量關系是;
(2)如圖2,當∠ADC=60°時,試探究線段MD與ME的數量關系,并證明你的結論;
(3)如圖3,當∠ADC=α時,求 的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com