科目: 來源: 題型:
【題目】如圖,已知∠MAN=120°,AC平分∠MAN.B、D分別在射線AN、AM上.
(1)在圖1中,當∠ABC=∠ADC=90°時,求證:AD+AB=AC
(2)若把(1)中的條件“∠ABC=∠ADC=90°”改為∠ABC+∠ADC=180°,其他條件不變,如圖2所示,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
(圖1) (圖2)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中,AB=AC,∠BAC=90°,直線l為經(jīng)過點A的任一直線,BD⊥l于D,CE⊥AE,若BD>CE,試問:
(1)AD與CE的大小關系如何?請說明理由;
(2)線段BD,DE,CE之間的數(shù)量之間關系如何?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】白色污染(White Pollution)是人們對難降解的塑料垃圾(多指塑料袋)污染環(huán)境現(xiàn)象的一種形象稱謂.為了讓全校同學感受丟棄塑料袋對環(huán)境的影響,小彬隨機抽取某小區(qū)戶居民,記錄了這些家庭年某個月丟棄塑料袋的數(shù)量(單位:個):
請根據(jù)上述數(shù)據(jù),解答以下問題:
(1)小彬按“組距為”列出了如下的頻數(shù)分布表(每組數(shù)據(jù)含最小值),請將表中空缺的部分補充完整,并補全頻數(shù)直方圖;
(2)根據(jù)(1)中的直方圖可以看出,這戶居民家這個月丟棄塑料袋的個數(shù)在 組的家庭最多;(填分組序號)
(3)根據(jù)頻數(shù)分布表,小彬又畫出了右圖所示的扇形統(tǒng)計圖.請將統(tǒng)計圖中各組占總數(shù)的百分比填在圖中,并求出組對應的扇形圓心角的度數(shù);
(4)若小區(qū)共有戶居民家庭,請你估計每月丟棄的塑料袋數(shù)量不小于個家庭個數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結(jié)論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目: 來源: 題型:
【題目】李明上星期買進某公司股票7000股,每股27元,下表為本周每日該股票的漲跌情況單位:元
星期 | 一 | 二 | 三 | 四 | 五 | 六 |
每股漲跌 |
這六天中,哪幾天的股票是上漲的?哪幾天的股票是下跌的?
哪天股票上漲的最多?你能算出這天收盤時每股是多少元嗎?
本周六收盤時每股是多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】李老師給愛好學習的小兵和小鵬提出這樣一個問題:如圖1,在△ABC中,AB=AC點P為邊BC上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小兵的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
小鵬的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,先證△GPC≌△ECP,可得:PE=CG,而PD=GF,則PD+PE=CF.
請運用上述中所證明的結(jié)論和證明思路完成下列兩題:
(1)如圖3,將長方形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=16,CF=6,求PG+PH的值;
(2)如圖4,P是邊長為6的等邊三角形ABC內(nèi)任一點,且PD⊥AB,PF⊥AC,PE⊥BC,求PD+PE+PF的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點在線段上.點從點出發(fā)向點運動,速度為2cm/s;同時,點也從點出發(fā)用1s到達處,并在處停留2s,然后按原速度向點運動,速度為4cm/s.最終,點比點早1s到達處.設點運動的時間為s.
(1)線段的長為 cm;當=3s時,兩點之間的距離為 cm;
(2)求線段的長;
(3)從兩點同時出發(fā)至點到達點處的這段時間內(nèi),為何值時,兩點相距1 cm?
查看答案和解析>>
科目: 來源: 題型:
【題目】某校八年級舉行英語演講比賽,購買A,B兩種筆記本作為獎品,這兩種筆記本的單價分別是12元和8元.根據(jù)比賽設獎情況,需購買筆記本共30本,并且所購買A筆記本的數(shù)量要不多于B筆記本數(shù)量的,但又不少于B筆記本數(shù)量,設買A筆記本n本,買兩種筆記本的總費為w元.
(1)寫出w(元)關于n(本)的函數(shù)關系式,并求出自變量n的取值范圍;
(2)購買這兩種筆記本各多少時,費用最少?最少的費用是多少元?
(3)商店為了促銷,決定僅對A種類型的筆記本每本讓利a元銷售,B種類型筆記本售價不變.問購買這兩種筆記本各多少本時花費最少?
查看答案和解析>>
科目: 來源: 題型:
【題目】某市實施居民用水階梯價格制度,按年度用水量計算,將居民家庭全年用水量劃分為三個階梯,水價按階梯遞增:
第一階梯:年用水量不超過200噸,每噸水價為3元;
第二階梯:年用水量超過200噸但不超過300噸的部分,每噸水價為3. 5元;
第三階梯:年用水量超過300噸的部分,每噸水價為6元.
(1)小明家2018年用水180噸,這一年應繳納水費 元;
(2)小亮家2018年繳納水費810元,則小亮家這一年用水多少噸?
(3)小紅家2017年和2018年共用水600噸,共繳納水費1950元,并且2018年的用水量超過2017年的用水量,則小紅家2017年和2018年各用水多少噸?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com