科目: 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣ x2+bx+e與x軸交于點(diǎn)A(﹣3,0)、點(diǎn)B(9,0),與y軸交于點(diǎn)C,頂點(diǎn)為D,連接AD、DB,點(diǎn)P為線段AD上一動(dòng)點(diǎn).
(1)求拋物線的解析式;
(2)如圖1,過(guò)點(diǎn)P作BD的平行線,交AB于點(diǎn)Q,連接DQ,設(shè)AQ=m,△PDQ的面積為S,求S關(guān)于m的函數(shù)解析式,以及S的最大值;
(3)如圖2,拋物線對(duì)稱(chēng)軸與x軸交與點(diǎn)G,E為OG的中點(diǎn),F(xiàn)為點(diǎn)C關(guān)于DG對(duì)稱(chēng)的對(duì)稱(chēng)點(diǎn),過(guò)點(diǎn)P分別作直線EF、DG的垂線,垂足為M、N,連接MN,直接寫(xiě)出△PMN為等腰三角形時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】問(wèn)題背景:
如圖①,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F(xiàn)分別是BC、CD上的點(diǎn),且∠EAF=60°.探究圖中線段BE,EF,F(xiàn)D之間的數(shù)量關(guān)系.
(1)小明同學(xué)探究此問(wèn)題的方法是,延長(zhǎng)FD到點(diǎn)G,使DG=BE,連接AG,先證明△ABE≌ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是;
(2)探索延伸:
如圖②,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF= ∠BAD,上述結(jié)論是否仍然成立,請(qǐng)說(shuō)明理由;
(3)實(shí)際應(yīng)用:
如圖③,在某次軍事演習(xí)中,艦艇甲在指揮中心O北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn),2小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F(xiàn)處,當(dāng)∠EOF=70°時(shí),兩艦艇之間的距離是海里.
(4)能力提高:
如圖④,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,則MN的長(zhǎng)為 .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖所示,為厲行節(jié)能減排,倡導(dǎo)綠色出行,某公司擬在我市甲、乙兩個(gè)街道社區(qū)投放一批共享單車(chē)(俗稱(chēng)“小黃車(chē)”),這批自行車(chē)包括A、B兩種不同款型.
成本單價(jià) (單位:元) | 投放數(shù)量 (單位:輛) | 總價(jià)(單位:元) | |
A型 | x | 50 | 50x |
B型 | x+10 | 50 |
|
成本合計(jì)(單位:元) | 7500 |
問(wèn)題1:看表填空
如圖2所示,本次試點(diǎn)投放的A、B型“小黃車(chē)”共有 輛;用含有x的式子表示出B型自行車(chē)的成本總價(jià)為 ;
問(wèn)題2:自行車(chē)單價(jià)
試求A、B兩型自行車(chē)的單價(jià)各是多少?
問(wèn)題3:投放數(shù)量
現(xiàn)在該公司采取如下方式投放A型“小黃車(chē)”:甲街區(qū)每100人投放n輛,乙街區(qū)每100人投放(n+2)輛,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個(gè)街區(qū)共有人,求甲街區(qū)每100人投放A型“小黃車(chē)”的數(shù)量.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】【閱讀理解】
我們知道,當(dāng)a>0且b>0時(shí),( ﹣ )2≥0,所以a﹣2 +≥0,從而a+b≥2 (當(dāng)a=b時(shí)取等號(hào)),
【獲得結(jié)論】設(shè)函數(shù)y=x+ (a>0,x>0),由上述結(jié)論可知:當(dāng)x= 即x= 時(shí),函數(shù)y有最小值為2
(1)【直接應(yīng)用】
若y1=x(x>0)與y2= (x>0),則當(dāng)x=時(shí),y1+y2取得最小值為 .
(2)【變形應(yīng)用】
若y1=x+1(x>﹣1)與y2=(x+1)2+4(x>﹣1),則 的最小值是
(3)【探索應(yīng)用】
在平面直角坐標(biāo)系中,點(diǎn)A(﹣3,0),點(diǎn)B(0,﹣2),點(diǎn)P是函數(shù)y= 在第一象限內(nèi)圖象上的一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)作PC⊥x軸于點(diǎn)C,PD⊥y軸于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為x,四邊形ABCD的面積為S
①求S與x之間的函數(shù)關(guān)系式;
②求S的最小值,判斷取得最小值時(shí)的四邊形ABCD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,(M2,N2),∠BAC=30°,E為AB邊的中點(diǎn),以BE為邊作等邊△BDE,連接AD,CD.
(1)求證:△ADE≌△CDB;
(2)若BC=,在AC邊上找一點(diǎn)H,使得BH+EH最小,并求出這個(gè)最小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】現(xiàn)要把192噸物資從我市運(yùn)往甲、乙兩地,用大、小兩種貨車(chē)共18輛恰好能一次性運(yùn)完這批物資.已知這兩種貨車(chē)的載重量分別為14噸/輛和8噸/輛,運(yùn)往甲、乙兩地的運(yùn)費(fèi)如表:
運(yùn)往地 | 甲地(元/輛) | 乙地(元/輛) |
大貨車(chē) | 720 | 800 |
小貨車(chē) | 500 | 650 |
(1)求這兩種貨車(chē)各用多少輛?
(2)如果安排10輛貨車(chē)前往甲地,其余貨車(chē)前往乙地,其中前往甲地的大貨車(chē)為a輛,前往甲、乙兩地的總運(yùn)費(fèi)為w元,求出w與a的函數(shù)關(guān)系式;
(3)在(2)的條件下,若運(yùn)往甲地的物資部少于96噸,請(qǐng)你設(shè)計(jì)出使總運(yùn)費(fèi)最低的貨車(chē)調(diào)配方案,并求出最少總運(yùn)費(fèi).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】對(duì)角線長(zhǎng)分別為6和8的菱形ABCD如圖所示,點(diǎn)O為對(duì)角線的交點(diǎn),過(guò)點(diǎn)O折疊菱形,使B,B′兩點(diǎn)重合,MN是折痕.若B'M=1,則CN的長(zhǎng)為____.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是∠AOB的角平分線OC上一點(diǎn),分別連接AP、BP,若再添加一個(gè)條件即可判定△AOP≌△BPO,則一下條件中:①∠A=∠B;②∠APO=∠BPO;③∠APC=∠BPC; ④AP=BP;⑤OA=OB.其中一定正確的是 (只需填序號(hào)即可)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖所示,AB∥DE,AC∥DF,AC=DF下列條件中,不能判斷△ABC≌△DEF的是( 。
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com