科目: 來源: 題型:
【題目】如圖,某校有一塊長為(5a+b)米,寬為(3a+b)米的長方形空地,中間是邊長(a﹣b)米的正方形草坪,其余為活動場地,學校計劃將活動場地(陰影部分)進行硬化.
(1)用含a,b的代數(shù)式表示需要硬化的面積并化簡;
(2)當a=5,b=2時,求需要硬化的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△中,∠ACB=90°,∠ABC與∠BAC的角平分線相交于點P,連接CP,過點P作DE⊥CP分別交AC、BC于點D、E,
(1)若∠BAC=40°,求∠APB與∠ADP度數(shù);
(2)探究:通過(1)的計算,小明猜測∠APB=∠ADP,請你說明小明猜測的正確性(要求寫出過程).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,D,E分別是AB,AC的中點,BE=2DE,延長DE到點F,使得EF=BE,連接CF.
(1)求證:四邊形BCFE是菱形;
(2)若CE=4,∠BCF=120°,求菱形BCFE的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有一塊長為米,寬為米的長方形空地,計劃修筑東西、南北走向的兩條道路,其余進行綠化(陰影部分),已知道路寬為米,東西走向的道路與空地北邊界相距1米,則綠化的面積是多少平方米?并求出當a=3,b=2時的綠化面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長均為1個單位長度,△ABC的頂點都在正方形網(wǎng)格的格點(網(wǎng)格線的交點)上.
(1)畫出△ABC先向右平移5個單位長度,再向上平移2個單位長度所得的△A1B1C1;
(2)畫出△ABC的中線AD;
(3)畫出△ABC的高CE所在直線,標出垂足E:
(4)在(1)的條件下,線段AA1和CC1的關(guān)系是
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點O是等邊△ABC內(nèi)一點,∠AOB=110°,∠BOC=α.以OC為一邊作等邊三角形OCD,連接AC、AD.當△AOD是等腰三角形時,求α的角度為______
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,AB=5cm,AC⊥AB,BD⊥AB,AC=BD=4cm,點P在線段AB上以1cm/s的速度由A向B運動,同時,點Q在線段BD上由點B向點D運動,它們運動時間為t(s).
(1)若點Q的運動速度與點P速度相等,當t=1,△ACP與△BPQ是否全等?請說明理由,并推導出此時線段PC和線段PQ的位置關(guān)系;
(2)如圖2,將圖1中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=α°”,其他條件不變,設點Q的運動速度為xcm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應的x,t的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖:在長方形ABCD中, AB=CD=4cm,BC=3cm,動點P從點A出發(fā),先以1cm/s的速度沿A→B,然后以2cm/s的速度沿B→C運動,到C點停止運動,設點P運動的時間為t秒,是否存在這樣的t,使得△BPD的面積S>3cm2?如果能,請求出t的取值范圍;如果不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】用兩種方法證明“四邊形的外角和等于360°”.
如圖,∠DAE、∠ABF、∠BCG、∠CDH是四邊形ABCD的四個外角.
求證:∠DAE+∠ABF+∠BCG+∠CDH=360°.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在平面直角坐標系xOy中,直線AB與x軸交于點A(﹣2,0),與反比例函數(shù)在第一象限內(nèi)的圖象的交于點B(2,n),連接BO,若S△AOB=4.
(1)求該反比例函數(shù)的解析式和直線AB的解析式;
(2)若直線AB與雙曲線的另一交點為D點,求△ODB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com